Skip to main content

Advertisement

Log in

From air pollution to cardiovascular diseases: the emerging role of epigenetics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The association between air pollution and a wide-ranging spectrum of acute and chronic disorders—including cardiovascular diseases—is widely acknowledged. Exposure to airborne pollutants triggers harmful mechanisms such as oxidative stress and systemic inflammation, which lead to increased incidence of myocardial infarction, arterial hypertension, stroke, and heart failure. Sustained efforts have been made in recent years to discover how environmental exposures affect human health through epigenetic phenomena, such as DNA methylation, histone modifications and non-coding RNA-mediated gene regulation. This review summarizes the current evidences on the relationship between air pollution exposure, epigenetic alterations and cardiovascular impact, in view of present implications and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Newell K, Kartsonaki C, Lam KBH, Kurmi OP (2017) Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. The Lancet 1:e368–e380

    PubMed  Google Scholar 

  2. Collaborators GBDRF (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1923–1994

    Google Scholar 

  3. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Balde AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potocnik J, Preker AS, Ramesh J, Rockstrom J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2018) The Lancet Commission on pollution and health. Lancet 391:462–512

    PubMed  Google Scholar 

  4. Lelieveld J, Klingmuller K, Pozzer A, Poschl U, Fnais M, Daiber A, Munzel T (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandstrom T, Blomberg A, Newby DE (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6:36–44

    CAS  PubMed  Google Scholar 

  6. Baccarelli A, Ghosh S (2012) Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 15:323–329

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I, Hoek G, Hoffmann B, Hoylaerts MF, Kunzli N, Mills N, Pekkanen J, Peters A, Piepoli MF, Rajagopalan S, Storey RF, Esc Working Group on Thrombosis EAFCP, Rehabilitation, and Association ESCHF (2015) Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93

    CAS  PubMed  Google Scholar 

  8. Hamanaka RB, Mutlu GM (2018) Particulate matter air pollution: effects on the cardiovascular system. Front in Endocrinol 9:680

    Google Scholar 

  9. Elia L, Condorelli G (2019) The involvement of epigenetics in vascular disease development. Int J Biochem Cell Biol 107:27–31

    CAS  PubMed  Google Scholar 

  10. Perera BPU, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC (2019) The role of environmental exposures and the epigenome in health and disease. Environ Mol Mutagen 61(1):176–192

    PubMed  Google Scholar 

  11. Stratton MS, Farina FM, Elia L (2019) Epigenetics and vascular diseases. J Mol Cell Cardiol 133:148–163

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    CAS  PubMed  Google Scholar 

  13. Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, Schwartz J (2012) Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology 23:332–340

    PubMed  PubMed Central  Google Scholar 

  16. Bind MA, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, Tarantini L, Vokonas PS, Koutrakis P, Schwartz J (2014) Air pollution and gene-specific methylation in the normative aging study: association, effect modification, and mediation analysis. Epigenetics 9:448–458

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang C, Chen R, Shi M, Cai J, Shi J, Yang C, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Kan H, Weinberg CR (2018) Possible mediation by methylation in acute inflammation following personal exposure to fine particulate air pollution. Am J Epidemiol 187:484–493

    PubMed  Google Scholar 

  18. Tobaldini E, Bollati V, Prado M, Fiorelli EM, Pecis M, Bissolotti G, Albetti B, Cantone L, Favero C, Cogliati C, Carrer P, Baccarelli A, Bertazzi PA, Montano N (2018) Acute particulate matter affects cardiovascular autonomic modulation and IFN-gamma methylation in healthy volunteers. Environ Res 161:97–103

    CAS  PubMed  Google Scholar 

  19. Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Particle Fibre Toxicol 10:18

    CAS  Google Scholar 

  20. Byun HM, Colicino E, Trevisi L, Fan T, Christiani DC, Baccarelli AA (2016) Effects of air pollution and blood mitochondrial DNA methylation on markers of heart rate variability. J Am Heart Assoc 5:e003218

    PubMed  PubMed Central  Google Scholar 

  21. Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2010) Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 5:222–228

    CAS  PubMed  Google Scholar 

  22. Lucchinetti E, Feng J, Silva R, Tolstonog GV, Schaub MC, Schumann GG, Zaugg M (2006) Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. Physiol Genomics 25:314–324

    CAS  PubMed  Google Scholar 

  23. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21:819–828

    PubMed  PubMed Central  Google Scholar 

  24. Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, Polidoro S, Frasca G, Verschuren MWM, Boer JMA, Iacoviello L, van der Schouw YT, Tumino R, Vineis P, Krogh V, Panico S, Sacerdote C, Matullo G (2015) Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenet 7:133

    Google Scholar 

  25. Fiorito G, Vlaanderen J, Polidoro S, Gulliver J, Galassi C, Ranzi A, Krogh V, Grioni S, Agnoli C, Sacerdote C, Panico S, Tsai MY, Probst-Hensch N, Hoek G, Herceg Z, Vermeulen R, Ghantous A, Vineis P, Naccarati A, Dagger, EXC (2018) Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: a prospective study in nonsmokers. Environ Mol Mutagen 59:234–246

    CAS  PubMed  Google Scholar 

  26. Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, Ruberto M, Biondi A, Cascio O, Bertozzi G, Pisanelli D, Maglietta F, Messina A, Mollica MP, Salerno M (2018) Heart rate variability as predictive factor for sudden cardiac death. Aging 10:166–177

    PubMed  PubMed Central  Google Scholar 

  27. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A (2016) Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the normative aging study. Environ Health Perspect 124:983–990

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gondalia R, Baldassari A, Holliday KM, Justice AE, Mendez-Giraldez R, Stewart JD, Liao D, Yanosky JD, Brennan KJM, Engel SM, Jordahl KM, Kennedy E, Ward-Caviness CK, Wolf K, Waldenberger M, Cyrys J, Cyrys J, Bhatti P, Horvath S, Assimes TL, Pankow JS, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA (2019) Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. Environ Int 132:104723

    PubMed  Google Scholar 

  29. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  31. Liu C, Xu J, Chen Y, Guo X, Zheng Y, Wang Q, Chen Y, Ni Y, Zhu Y, Joyce BT, Baccarelli A, Deng F, Zhang W, Hou L (2015) Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature. Environ Health 14:65

    PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Diaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L (2017) Traffic-derived particulate matter exposure and histone H3 modification: a repeated measures study. Environ Res 153:112–119

    CAS  PubMed  Google Scholar 

  33. Cao D, Bromberg PA, Samet JM (2007) COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am J Respir Cell Mol Biol 37:232–239

    CAS  PubMed  Google Scholar 

  34. Doyle K, Fitzpatrick FA (2010) Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J Biol Chem 285:17417–17424

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61:95–110

    CAS  PubMed  Google Scholar 

  36. Kreuz S, Fischle W (2016) Oxidative stress signaling to chromatin in health and disease. Epigenomics 8:843–862

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M, Costa M (2010) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 285:7374–7383

    CAS  PubMed  Google Scholar 

  39. Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Diaz A, Bonzini M, Carugno M, Koutrakis P, Kang CM, Bian S, Gao T, Byun HM, Schwartz J, Baccarelli AA, Hou L (2017) Histone 3 modifications and blood pressure in the Beijing truck driver air pollution study. Biomarkers 22:584–593

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wojciechowska A, Braniewska A, Kozar-Kaminska K (2017) MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 26:865–874

    PubMed  Google Scholar 

  41. Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M, Pegoraro V, Motta V, Tarantini L, Cantone L, Schwartz J, Bertazzi PA, Baccarelli A (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118:763–768

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vriens A, Nawrot TS, Saenen ND, Provost EB, Kicinski M, Lefebvre W, Vanpoucke C, Van Deun J, De Wever O, Vrijens K, De Boever P, Plusquin M (2016) Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva. Environ Health 15:80

    PubMed  PubMed Central  Google Scholar 

  43. Fossati S, Baccarelli A, Zanobetti A, Hoxha M, Vokonas PS, Wright RO, Schwartz J (2014) Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25:68–78

    PubMed  PubMed Central  Google Scholar 

  44. Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA (2016) Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Particle Fibre Toxicol 13:13

    Google Scholar 

  45. Chen R, Li H, Cai J, Wang C, Lin Z, Liu C, Niu Y, Zhao Z, Li W, Kan H (2018) Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ Health Perspect 126:017007

    PubMed  PubMed Central  Google Scholar 

  46. Pergoli L, Cantone L, Favero C, Angelici L, Iodice S, Pinatel E, Hoxha M, Dioni L, Letizia M, Albetti B, Tarantini L, Rota F, Bertazzi PA, Tirelli AS, Dolo V, Cattaneo A, Vigna L, Battaglia C, Carugno M, Bonzini M, Pesatori AC, Bollati V (2017) Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Particle Fibre Toxicol 14:32

    Google Scholar 

  47. Motta V, Favero C, Dioni L, Iodice S, Battaglia C, Angelici L, Vigna L, Pesatori AC, Bollati V (2016) MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: results from a mediated moderation analysis. Environ Res 146:274–281

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, Schwartz J, Baccarelli AA, Prada D (2018) Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. Environ Res 167:640–649

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V (2018) Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol 9:1377

    PubMed  PubMed Central  Google Scholar 

  50. Das A, Ganesh K, Khanna S, Sen CK, Roy S (2014) Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192:1120–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng J, Li A, Deng J, Yang Y, Dang L, Ye Y, Li Y, Zhang W (2014) miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health and Dis 13:27

    Google Scholar 

  52. Canfran-Duque A, Rotllan N, Zhang X, Fernandez-Fuertes M, Ramirez-Hidalgo C, Araldi E, Daimiel L, Busto R, Fernandez-Hernando C, Suarez Y (2017) Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med 9:1244–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang L, Wang B, Zhou Q, Wang Y, Liu X, Liu Z, Zhan Z (2018) MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis 9:769

    PubMed  PubMed Central  Google Scholar 

  54. Gu GL, Xu XL, Sun XT, Zhang J, Guo CF, Wang CS, Sun B, Guo GL, Ma K, Huang YY, Sun LQ, Wang YQ (2015) Cardioprotective effect of MicroRNA-21 in murine myocardial infarction. Cardiovasc Ther 33:109–117

    CAS  PubMed  Google Scholar 

  55. Micheu MM, Scarlatescu AI, Scafa-Udriste A, Dorobantu M (2018) The winding road of cardiac regeneration-stem cell omics in the spotlight. Cells 7:225

    Google Scholar 

  56. Huang W, Tian SS, Hang PZ, Sun C, Guo J, Du ZM (2016) Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Therapy Nucleic Acids 5:e296

    CAS  Google Scholar 

  57. Ding S, Huang H, Xu Y, Zhu H, Zhong C (2017) MiR-222 in cardiovascular diseases: physiology and pathology. Biomed Res Int 2017:4962426

    PubMed  PubMed Central  Google Scholar 

  58. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. https://doi.org/10.3402/jev.v3.23743

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hou T, Liao J, Zhang C, Sun C, Li X, Wang G (2018) Elevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int Immunopharmacol 54:68–77

    CAS  PubMed  Google Scholar 

  60. Bye A, Rosjo H, Nauman J, Silva GJ, Follestad T, Omland T, Wisloff U (2016) Circulating microRNAs predict future fatal myocardial infarction in healthy individuals—the HUNT study. J Mol Cell Cardiol 97:162–168

    CAS  PubMed  Google Scholar 

  61. Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MA, Liu LC, van der Harst P, Pinto YM, de Boer RA, Meyer S, Teerlink JR, O'Connor CM, Metra M, Davison BA, Bloomfield DM, Cotter G, Cleland JG, Mebazaa A, Laribi S, Givertz MM, Ponikowski P, van der Meer P, van Veldhuisen DJ, Voors AA, Berezikov E (2016) Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 18:414–423

    CAS  PubMed  Google Scholar 

  62. Rowley JW, Chappaz S, Corduan A, Chong MM, Campbell R, Khoury A, Manne BK, Wurtzel JG, Michael JV, Goldfinger LE, Mumaw MM, Nieman MT, Kile BT, Provost P, Weyrich AS (2016) Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 127:1743–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang D, Atanasov AG (2019) The microRNAs regulating vascular smooth muscle cell proliferation: a minireview. Int J Mol Sci 20:324

    PubMed Central  Google Scholar 

  64. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Investig 119:2634–2647

    CAS  PubMed  Google Scholar 

  65. Holmberg J, Bhattachariya A, Alajbegovic A, Rippe C, Ekman M, Dahan D, Hien TT, Boettger T, Braun T, Sward K, Hellstrand P, Albinsson S (2018) Loss of Vascular myogenic tone in miR-143/145 Knockout mice is associated with hypertension-induced vascular lesions in small mesenteric arteries. Arterioscler Thromb Vasc Biol 38:414–424

    CAS  PubMed  Google Scholar 

  66. Zhang M, Wang Z (2019) Downregulation of miR143/145 gene cluster expression promotes the aortic media degeneration process via the TGF-beta1 signaling pathway. Am J Transl Res 11:370–378

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang X, Dong M, Wen H, Liu X, Zhang M, Ma L, Zhang C, Luan X, Lu H, Zhang Y (2017) MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1. Oncotarget 8:75844–75853

    PubMed  PubMed Central  Google Scholar 

  69. Feng M, Xu D, Wang L (2018) miR-26a inhibits atherosclerosis progression by targeting TRPC3. Cell Biosci 8:4

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M-MM initiated the review and prepared the first draft. M-VB, I-AN, ÁK and RS critically reviewed the relevant literature, and contributed to the final version of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marius-Victor Birsan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micheu, MM., Birsan, MV., Szép, R. et al. From air pollution to cardiovascular diseases: the emerging role of epigenetics. Mol Biol Rep 47, 5559–5567 (2020). https://doi.org/10.1007/s11033-020-05570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05570-9

Keywords

Navigation