Skip to main content
Log in

ILK silencing inhibits migration and invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor and it is associated with poor survival. Integrin-linked kinase (ILK) is a serine/threonine protein pseudo-kinase that binds to the cytoplasmic domains of β1 and β3 integrins and has been previously shown to promote invasion and metastasis in many cancer types, including GBM. However, little is known regarding the exact molecular mechanism implicating ILK in GBM aggressiveness. In this study, we used two brain cell lines, the non-invasive neuroglioma H4 cells, and the highly invasive glioblastoma A172 cells, which express ILK in much higher levels than H4. We studied the effect of ILK silencing on the metastatic behavior of glioblastoma cells in vitro and elucidate the underlying molecular mechanism. We showed that siRNA-mediated silencing of ILK inhibits cell migration and invasion of the highly invasive A172 cells while it does not affect the migratory and invasive capacity of H4 cells. These data were also supported by respective changes in the expression of Rho-associated kinase 1 (ROCK1), fascin actin-bundling protein 1 (FSCN1), and matrix metalloproteinase 13 (MMP13), which are known to regulate cell migration and invasion. Our findings were further corroborated by analyzing the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. We conclude that ILK promotes glioblastoma cell invasion through activation of ROCK1 and FSCN1 in vitro, providing a more exact molecular mechanism for its action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kleihues P, Sobin LH (2000) World Health Organization classification of tumors. Cancer 88(12):2887

    Article  CAS  Google Scholar 

  2. Buckner JC, Brown PD, O'Neill BP, Meyer FB, Wetmore CJ, Uhm JH (2007) Central nervous system tumors. Mayo Clin Proc 82(10):1271–1286. https://doi.org/10.4065/82.10.1271

    Article  PubMed  Google Scholar 

  3. Porter KR, McCarthy BJ, Berbaum ML, Davis FG (2011) Conditional survival of all primary brain tumor patients by age, behavior, and histology. Neuroepidemiology 36(4):230–239. https://doi.org/10.1159/000327752

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ma YS, Wu ZJ, Bai RZ, Dong H, Xie BX, Wu XH, Hang XS, Liu AN, Jiang XH, Wang GR, Jiang JJ, Xu WH, Chen XP, Tan GH, Fu D, Liu JB, Liu Q (2018) DRR1 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via regulating AKT activation. Cancer Lett 423:86–94. https://doi.org/10.1016/j.canlet.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  5. Ivaska J, Heino J (2000) Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Life Sci CMLS 57(1):16–24. https://doi.org/10.1007/s000180050496

    Article  CAS  PubMed  Google Scholar 

  6. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069. https://doi.org/10.1016/j.biocel.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  7. Kai F, Drain AP, Weaver VM (2019) The extracellular matrix modulates the metastatic journey. Dev Cell 49(3):332–346. https://doi.org/10.1016/j.devcel.2019.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agrez M, Chen A, Cone RI, Pytela R, Sheppard D (1994) The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. J Cell Biol 127(2):547–556. https://doi.org/10.1083/jcb.127.2.547

    Article  CAS  PubMed  Google Scholar 

  9. Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S (2003) alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22(11):1688–1702. https://doi.org/10.1038/sj.onc.1206347

    Article  CAS  PubMed  Google Scholar 

  10. Chin YT, He ZR, Chen CL, Chu HC, Ho Y, Su PY, Yang YSH, Wang K, Shih YJ, Chen YR, Pedersen JZ, Incerpi S, Nana AW, Tang HY, Lin HY, Mousa SA, Davis PJ, Whang-Peng J (2019) Tetrac and NDAT induce anti-proliferation via integrin alphavbeta3 in colorectal cancers with different K-RAS status. Front Endocrinol 10:130. https://doi.org/10.3389/fendo.2019.00130

    Article  Google Scholar 

  11. Li R, Shi Y, Zhao S, Shi T, Zhang G (2019) NF-kappaB signaling and integrin-beta1 inhibition attenuates osteosarcoma metastasis via increased cell apoptosis. Int J Biol Macromol 123:1035–1043. https://doi.org/10.1016/j.ijbiomac.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  12. Zaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867. https://doi.org/10.1038/ncb0807-858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elad N, Volberg T, Patla I, Hirschfeld-Warneken V, Grashoff C, Spatz JP, Fassler R, Geiger B, Medalia O (2013) The role of integrin-linked kinase in the molecular architecture of focal adhesions. J Cell Sci 126(Pt 18):4099–4107. https://doi.org/10.1242/jcs.120295

    Article  CAS  PubMed  Google Scholar 

  14. Winograd-Katz SE, Fassler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15(4):273–288. https://doi.org/10.1038/nrm3769

    Article  CAS  PubMed  Google Scholar 

  15. Horton ER, Byron A, Askari JA, Ng DH, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17(12):1577

    Article  CAS  Google Scholar 

  16. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560):91–96. https://doi.org/10.1038/379091a0

    Article  CAS  PubMed  Google Scholar 

  17. Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7(1):20–31

    Article  CAS  Google Scholar 

  18. Gkretsi V, Mars WM, Bowen WC, Barua L, Yang Y, Guo L, St-Arnaud R, Dedhar S, Wu C, Michalopoulos GK (2007) Loss of integrin linked kinase from mouse hepatocytes in vitro and in vivo results in apoptosis and hepatitis. Hepatology 45(4):1025–1034. https://doi.org/10.1002/hep.21540

    Article  CAS  PubMed  Google Scholar 

  19. Liang F, Zhang S, Wang B, Qiu J, Wang Y (2014) Overexpression of integrin-linked kinase (ILK) promotes glioma cell invasion and migration and down-regulates E-cadherin via the NF-kappaB pathway. J Mol Histol 45(2):141–151. https://doi.org/10.1007/s10735-013-9540-5

    Article  CAS  PubMed  Google Scholar 

  20. Zheng CC, Hu HF, Hong P, Zhang QH, Xu WW, He QY, Li B (2019) Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer. Am J Cancer Res 9(1):186–197

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S (2000) Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci USA 97(7):3207–3212. https://doi.org/10.1073/pnas.060579697

    Article  CAS  PubMed  Google Scholar 

  22. Wang SC, Makino K, Xia W, Kim JS, Im SA, Peng H, Mok SC, Singletary SE, Hung MC (2001) DOC-2/hDab-2 inhibits ILK activity and induces anoikis in breast cancer cells through an Akt-independent pathway. Oncogene 20(47):6960–6964. https://doi.org/10.1038/sj.onc.1204873

    Article  CAS  PubMed  Google Scholar 

  23. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208(1):91–99. https://doi.org/10.1002/path.1860

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Li C, Nie H, Lv X, Qu Y, Yu B, Su L, Li J, Chen X, Ju J, Yu Y, Yan M, Gu Q, Zhu Z, Liu B (2012) Down-regulated miR-625 suppresses invasion and metastasis of gastric cancer by targeting ILK. FEBS Lett 586(16):2382–2388. https://doi.org/10.1016/j.febslet.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  25. Zheng K, Wang G, Li C, Shan X, Liu H (2015) Knockdown of ILK inhibits glioma development via upregulation of E-cadherin and downregulation of cyclin D1. Oncol Rep 34(1):272–278. https://doi.org/10.3892/or.2015.3983

    Article  CAS  PubMed  Google Scholar 

  26. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B 355(1399):965–970. https://doi.org/10.1098/rstb.2000.0632

    Article  CAS  Google Scholar 

  27. Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154(1):147–160. https://doi.org/10.1083/jcb.200103048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zervas CG, Gregory SL, Brown NH (2001) Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 152(5):1007–1018. https://doi.org/10.1083/jcb.152.5.1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakai T, Li S, Docheva D, Grashoff C, Sakai K, Kostka G, Braun A, Pfeifer A, Yurchenco PD, Fässler R (2003) Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 17(7):926–940

    Article  CAS  Google Scholar 

  30. Etienne-Manneville S (2006) In vitro assay of primary astrocyte migration as a tool to study Rho GTPase function in cell polarization. Methods Enzymol 406:565–578. https://doi.org/10.1016/S0076-6879(06)06044-7

    Article  CAS  PubMed  Google Scholar 

  31. Deng L, Li G, Li R, Liu Q, He Q, Zhang J (2010) Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer Biol Ther 9(11):875–884. https://doi.org/10.4161/cbt.9.11.11634

    Article  CAS  PubMed  Google Scholar 

  32. Rath N, Morton JP, Julian L, Helbig L, Kadir S, McGhee EJ, Anderson KI, Kalna G, Mullin M, Pinho AV, Rooman I, Samuel MS, Olson MF (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med 9(2):198–218. https://doi.org/10.15252/emmm.201606743

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Wang H, Ding Y, Zhang Z, Zheng Z, Dong J, Kim H, Meng X, Zhou Q, Zhou J (2018) Targeting the NRF-2/RHOA/ROCK signaling pathway with a novel aziridonin, YD0514, to suppress breast cancer progression and lung metastasis. Cancer Lett 424:97–108

    Article  CAS  Google Scholar 

  34. Gkretsi V, Louca M, Stylianou A, Minadakis G, Spyrou GM, Stylianopoulos T (2019) Inhibition of breast cancer cell invasion by Ras suppressor-1 (RSU-1) silencing is reversed by growth differentiation factor-15 (GDF-15). Int J Mol Sci. https://doi.org/10.3390/ijms20010163

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jayo A, Parsons M, Adams JC (2012) A novel Rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability. BMC Biol 10:72. https://doi.org/10.1186/1741-7007-10-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Cong QX, Zhang SG, Zhai XW, Li HF, Li SQ (2018) High expression levels of fascin-1 protein in human gliomas and its clinical relevance. Open Med 13:544–550. https://doi.org/10.1515/med-2018-0080

    Article  CAS  Google Scholar 

  37. Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Lae M, Louvard D, Ben-Ze'ev A, Robine S (2007) Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853. https://doi.org/10.1158/0008-5472.CAN-07-0929

    Article  CAS  PubMed  Google Scholar 

  38. Hashimoto Y, Skacel M, Adams JC (2005) Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol 37(9):1787–1804. https://doi.org/10.1016/j.biocel.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Grothey A, Hashizume R, Ji H, Tubb BE, Patrick CW Jr, Yu D, Mooney EE, McCrea PD (2000) C-erbB-2/HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines. Oncogene 19(42):4864–4875. https://doi.org/10.1038/sj.onc.1203838

    Article  CAS  PubMed  Google Scholar 

  40. Louca M, Stylianou A, Minia A, Pliaka V, Alexopoulos LG, Gkretsi V, Stylianopoulos T (2019) Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation. Sci Rep 9(1):7782. https://doi.org/10.1038/s41598-019-44200-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Louca M, Gkretsi V, Stylianopoulos T (2019) Coordinated expression of Ras suppressor 1 (RSU-1) and growth differentiation factor 15 (GDF15) affects glioma cell invasion. Cancers 11:8. https://doi.org/10.3390/cancers11081159

    Article  CAS  Google Scholar 

  42. Sintupisut N, Liu PL, Yeang CH (2013) An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res 41(19):8803–8821. https://doi.org/10.1093/nar/gkt656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yizhak K, Aguet F, Kim J, Hess JM, Kubler K, Grimsby J, Frazer R, Zhang H, Haradhvala NJ, Rosebrock D, Livitz D, Li X, Arich-Landkof E, Shoresh N, Stewart C, Segre AV, Branton PA, Polak P, Ardlie KG, Getz G (2019) RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. https://doi.org/10.1126/science.aaw0726

    Article  PubMed  Google Scholar 

  44. Roufas C, Chasiotis D, Makris A, Efstathiades C, Dimopoulos C, Zaravinos A (2018) The expression and prognostic impact of immune cytolytic activity-related markers in human malignancies: a comprehensive meta-analysis. Front Oncol 8:27. https://doi.org/10.3389/fonc.2018.00027

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gkretsi V, Kalli M, Efstathiades C, Papageorgis P, Papanikolaou V, Zacharia LC, Tsezou A, Athanassiou E, Stylianopoulos T (2019) Depletion of Ras suppressor-1 (RSU-1) promotes cell invasion of breast cancer cells through a compensatory upregulation of a truncated isoform. Sci Rep 9(1):10050. https://doi.org/10.1038/s41598-019-46575-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gkretsi V, Stylianou A, Louca M, Stylianopoulos T (2017) Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional in vitro approach. Oncotarget 8(16):27364–27379. https://doi.org/10.18632/oncotarget.16062

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dayal N, Mikek CG, Hernandez D, Naclerio GA, Yin Chu EF, Carter-Cooper BA, Lapidus RG, Sintim HO (2019) Potently inhibiting cancer cell migration with novel 3H-pyrazolo[4,3-f]quinoline boronic acid ROCK inhibitors. Eur J Med Chem 180:449–456. https://doi.org/10.1016/j.ejmech.2019.06.089

    Article  CAS  PubMed  Google Scholar 

  48. Peraud A, Mondal S, Hawkins C, Mastronardi M, Bailey K, Rutka JT (2003) Expression of fascin, an actin-bundling protein, in astrocytomas of varying grades. Brain Tumor Pathol 20(2):53–58

    Article  CAS  Google Scholar 

  49. Roma AA, Prayson RA (2005) Fascin expression in 90 patients with glioblastoma multiforme. Ann Diagn Pathol 9(6):307–311. https://doi.org/10.1016/j.anndiagpath.2005.07.005

    Article  PubMed  Google Scholar 

  50. Senger D, Cairncross JG, Forsyth PA (2003) Long-term survivors of glioblastoma: statistical aberration or important unrecognized molecular subtype? Cancer J 9(3):214–221

    Article  Google Scholar 

  51. Parsons M, Adams JC (2008) Rac regulates the interaction of fascin with protein kinase C in cell migration. J Cell Sci 121(Pt 17):2805–2813. https://doi.org/10.1242/jcs.022509

    Article  CAS  PubMed  Google Scholar 

  52. Tsai WC, Jin JS, Chang WK, Chan DC, Yeh MK, Cherng SC, Lin LF, Sheu LF, Chao YC (2007) Association of cortactin and fascin-1 expression in gastric adenocarcinoma: correlation with clinicopathological parameters. J Histochem Cytochem 55(9):955–962. https://doi.org/10.1369/jhc.7A7235.2007

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi Y, Osanai M, Lee GH (2011) Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 102(6):1228–1235. https://doi.org/10.1111/j.1349-7006.2011.01910.x

    Article  CAS  PubMed  Google Scholar 

  54. Fan Y, Gan Y, Shen Y, Cai X, Song Y, Zhao F, Yao M, Gu J, Tu H (2015) Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget 6(18):16120–16134. https://doi.org/10.18632/oncotarget.3878

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang R, Zhu Z, Shen WZ, Li XR, Dhoomun DK, Tian Y (2019) Golgi membrane protein 1 (GOLM1) promotes growth and metastasis of breast cancer cells via regulating matrix metalloproteinase-13 (MMP13). Med Sci Monit 25:847–855. https://doi.org/10.12659/Msm.911667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumamoto K, Fujita K, Kurotani R, Saito M, Unoki M, Hagiwara N, Shiga H, Bowman ED, Yanaihara N, Okamura S, Nagashima M, Miyamoto K, Takenoshita S, Yokota J, Harris CC (2009) ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. Int J Cancer 125(6):1306–1315. https://doi.org/10.1002/ijc.24437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Molecular Medicine Research Center of the University of Cyprus for offering advice and access to specialized research infrastructure. M.L was supported by fellowship from the Cyprus Scholarship Foundation.

Funding

This work was funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 336839-ReEngineeringCancer (to TS).

Author information

Authors and Affiliations

Authors

Contributions

ML designed the study, performed the experiments, analyzed the data and wrote the manuscript; AZ extracted the TCGA data and performed the analysis of ILK expression in glioblastomas and the pairwise correlations of gene expression using the TCGA-GBM database, VG and TS participated in the conceptualization and study design, edited the manuscript and oversaw the project. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Triantafyllos Stylianopoulos or Vasiliki Gkretsi.

Ethics declarations

Conflict of interest

Non-financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louca, M., Zaravinos, A., Stylianopoulos, T. et al. ILK silencing inhibits migration and invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1. Mol Cell Biochem 471, 143–153 (2020). https://doi.org/10.1007/s11010-020-03774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03774-y

Keywords

Navigation