Skip to main content
Log in

Statistical inference based on a new weighted likelihood approach

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We discuss a new weighted likelihood method for robust parametric estimation. The method is motivated by the need for generating a simple estimation strategy which provides a robust solution that is simultaneously fully efficient when the model is correctly specified. This is achieved by appropriately weighting the score function at each observation in the maximum likelihood score equation. The weight function determines the compatibility of each observation with the model in relation to the remaining observations and applies a downweighting only if it is necessary, rather than automatically downweighting a proportion of the observations all the time. This allows the estimators to retain full asymptotic efficiency at the model. We establish all the theoretical properties of the proposed estimators and substantiate the theory developed through simulation and real data examples. Our approach provides an alternative to the weighted likelihood method of Markatou et al. (J Stat Plan Inference 57(2):215–232, 1997; J Am Stat Assoc 93(442):740–750, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinelli C (2002a) Robust model selection in regression via weighted likelihood methodology. Stat Probab Lett 56(3):289–300

    Article  MathSciNet  Google Scholar 

  • Agostinelli C (2002b) Robust stepwise regression. J Appl Stat 29(6):825–840

    Article  MathSciNet  Google Scholar 

  • Agostinelli C (2007) Robust estimation for circular data. Comput Stat Data Anal 51(12):5867–5875

    Article  MathSciNet  Google Scholar 

  • Agostinelli C, Greco L (2013) A weighted strategy to handle likelihood uncertainty in Bayesian inference. Comput Stat 28(1):319–339

    Article  MathSciNet  Google Scholar 

  • Agostinelli C, Greco L (2018) Weighted likelihood estimation of multivariate location and scatter. Test 28(3):756–784. https://doi.org/10.1007/s11749-018-0596-0

    Article  MathSciNet  MATH  Google Scholar 

  • Agostinelli C, Markatou M (1998) A one-step robust estimator for regression based on the weighted likelihood reweighting scheme. Stat Probab Lett 37(4):341–350

    Article  MathSciNet  Google Scholar 

  • Agostinelli C, Markatou M (2001) Test of hypotheses based on the weighted likelihood methodology. Stat Sin 11:499–514

    MathSciNet  MATH  Google Scholar 

  • Basu A, Lindsay BG (1994) Minimum disparity estimation for continuous models: efficiency, distributions and robustness. Ann Inst Stat Math 46(4):683–705

    Article  MathSciNet  Google Scholar 

  • Basu A, Harris IR, Hjort NL, Jones MC (1998) Robust and efficient estimation by minimising a density power divergence. Biometrika 85(3):549–559

    Article  MathSciNet  Google Scholar 

  • Basu A, Shioya H, Park C (2011) Statistical inference: the minimum distance approach. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Biswas A, Roy T, Majumder S, Basu A (2015) A new weighted likelihood approach. Stat 4(1):97–107

    Article  MathSciNet  Google Scholar 

  • Field C, Smith B (1994) Robust estimation: a weighted maximum likelihood approach. Int Stat Rev 62(3):405–424

    Article  Google Scholar 

  • Gervini D, Yohai VJ (2002) A class of robust and fully efficient regression estimators. Ann Stat 30(2):583–616

    Article  MathSciNet  Google Scholar 

  • Green PJ (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J R Stat Soc Ser B (Methodol) 46(2):149–192

    MathSciNet  MATH  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101

    Article  MathSciNet  Google Scholar 

  • Léger C, Romano JP (1990) Bootstrap choice of tuning parameters. Ann Inst Stat Math 42(4):709–735

    Article  MathSciNet  Google Scholar 

  • Lehmann EL, Casella G (2006) Theory of point estimation. Springer, New York

    MATH  Google Scholar 

  • Lenth RV, Green PJ (1987) Consistency of deviance-based \( M \)-estimators. J R Stat Soc Ser B Methodol 49(3):326–330

    MathSciNet  MATH  Google Scholar 

  • Lindsay BG (1994) Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann Stat 22(2):1081–1114

    Article  MathSciNet  Google Scholar 

  • Lubischew AA (1962) On the use of discriminant functions in taxonomy. Biometrics 18(4):455–477

    Article  Google Scholar 

  • Markatou M (2000a) A closer look at weighted likelihood in the context of mixtures. In: Charalambides CA, Koutras MV, Balakrishnan N (eds) Probability and statistical models with applications. CRC Press, Boca Raton, pp 447–467

    Google Scholar 

  • Markatou M (2000b) Mixture models, robustness, and the weighted likelihood methodology. Biometrics 56(2):483–486

    Article  Google Scholar 

  • Markatou M, Basu A, Lindsay B (1997) Weighted likelihood estimating equations: the discrete case with applications to logistic regression. J Stat Plan Inference 57(2):215–232

    Article  MathSciNet  Google Scholar 

  • Markatou M, Basu A, Lindsay B (1998) Weighted likelihood equations with bootstrap root search. J Am Stat Assoc 93(442):740–750

    Article  MathSciNet  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis, 5th edn. Wiley, New York

    MATH  Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Book  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Staudte RG, Sheather SJ (1990) Robust estimation and testing. Wiley, New York

    Book  Google Scholar 

  • Stigler SM (1977) Do robust estimators work with real data? Ann Stat 5(6):1055–1098

    Article  MathSciNet  Google Scholar 

  • Warwick J, Jones MC (2005) Choosing a robustness tuning parameter. J Stat Comput Simul 75(7):581–588

    Article  MathSciNet  Google Scholar 

  • Woodruff RC, Mason JM, Valencia R, Zimmering S (1984) Chemical mutagenesis testing in Drosophila: I. Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories. Environ Mutagen 6(2):189–202

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the comments received from the editor and the anonymous referees which greatly improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayanendranath Basu.

Ethics declarations

Conflict of interest

The authors of this article declare no conflict of interests in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 842 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Biswas, A., Roy, T. et al. Statistical inference based on a new weighted likelihood approach. Metrika 84, 97–120 (2021). https://doi.org/10.1007/s00184-020-00778-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00778-y

Keywords

Navigation