Skip to main content
Log in

Effect of Processing Parameters on the Strain Inhomogeneity and Processing Load in Vortex Extrusion of Al–Mg–Si Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Vortex extrusion (VE), a single pass severe plastic deformation technique, can impose a high amount of effective strain obtained from simultaneously twisting and reduction in area on the processed material. In this study, a hybrid investigation based on finite element analysis (FEA) and response surface methodology (RSM) was carried out to investigate the effect of geometrical parameters involved in VE die design on the strain inhomogeneity and processing load in vortex extrusion of Al–Mg–Si alloy. The analysis of variance (ANOVA) was used for verifying the effect of input variables and the significance of mathematical modeling. Developed mathematical model from RSM was verified using results obtained from the experiment. Results showed that increasing the twist angle increases the effective strain inhomogeneity. Twist angle (\(\varphi\)), reduction in area (RA), and interaction of twist angle and reduction in area (\(\varphi \times RA\)) were determined as the most effective parameters affecting strain inhomogeneity, while the processing parameters of\(\varphi\), RA, and the interactions of \(\varphi \times RA\), \(\varphi \times \varphi\) and \(RA\times RA\) are the most effective parameters on the load of VE process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, Jom 58, 33 (2006)

    Article  Google Scholar 

  2. E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, Int. J. Adv. Manuf. Tech. 100, 1647 (2019)

    Article  Google Scholar 

  3. A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008)

    Article  CAS  Google Scholar 

  4. X. Ma, M.R. Barnett, Y.H. Kim, Int. J. Mech. Sci. 46, 449 (2004)

    Article  Google Scholar 

  5. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Comput. Mater. Sci. 60, 194 (2012)

    Article  CAS  Google Scholar 

  6. M. Nouri, H.M. Semnani, E. Emadoddin, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00668-y

    Article  Google Scholar 

  7. Y. Beygelzimer, R. Kulagin, M.I. Latypov, V. Varyukhin, H.S. Kim, Met. Mater. Int. 21, 734 (2015)

    Article  Google Scholar 

  8. J. Joudaki, M. Safari, S.M. Alhosseini, Met. Mater. Int. 25, 1593 (2019)

    Article  CAS  Google Scholar 

  9. X. Che, Q. Wang, B. Dong, M. Meng, Z. Zhang, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00600-z

    Article  Google Scholar 

  10. S.M. Alavizadeh, K. Abrinia, A. Parvizi, Met. Mater. Int. 26, 260 (2020)

    Article  Google Scholar 

  11. M. Shahbaz, N. Pardis, R. Ebrahimi, B. Talebanpour, Mater. Sci. Eng. A 530, 469 (2011)

    Article  CAS  Google Scholar 

  12. H. Ataei, M. Shahbaz, H.S. Kim, N. Pardis, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00742-5

    Article  Google Scholar 

  13. M. Shahbaz, R. Ebrahimi, H.S. Kim, Appl. Math. Model. 40, 3550 (2016)

    Article  Google Scholar 

  14. M. Shahbaz, N. Pardis, J.G. Kim, R. Ebrahimi, H.S. Kim, Mater. Sci. Eng. A 674, 472 (2016)

    Article  CAS  Google Scholar 

  15. M. Shahbaz, J.G. Kim, R. Ebrahimi, H.S. Kim, IJMF 4, 52 (2017)

    Google Scholar 

  16. G. Ranjbari, A. Doniavi, M. Shahbaz, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00635-7

    Article  Google Scholar 

  17. DEFORM-3D V10, Scientific Forming Technologies Corporation (SFTC).

  18. CATIA v5R21, Dassault Systems Corporation.

  19. S.H. Molaei, M. Shahbaz, R. Ebrahimi, IJMF 1, 14 (2014)

    Google Scholar 

  20. U.M. Iqbal, V.S. Kumar, S. Gopalakannan, Measurement 94, 126 (2016)

    Article  Google Scholar 

  21. U.M. Iqbal, V.S. Kumar, Proc. IME. B. J. Eng. Manuf. 228, 1458 (2014)

    Article  CAS  Google Scholar 

  22. R. Nemati-Chari, K. Dehghani, A. Kami, D. Banabic, Proc. Rom. Acad. Math. Phys. Tech. Sci. Inform. Sci. 16, 184 (2015)

    Google Scholar 

  23. S. Shahraki, I. Alinaghian, M. Motahari-Nezhad, Trans. Indian Metals. 71, 545 (2018)

    Article  CAS  Google Scholar 

  24. M. Ebrahimi, F. Pashmforoush, C. Gode, J. Braz. Soc. Mech. Sci. Eng. 41, 95 (2019)

    Article  Google Scholar 

  25. P. Ong, D.D.V.S. Chin, C.S. Ho, C.H. Ng, Neural. Comput. Appl. 29, 1077 (2018)

    Article  Google Scholar 

  26. A.N. Ali, S.J. Huang, Mater. Sci. Eng. A 746, 197 (2019)

    Article  CAS  Google Scholar 

  27. A. Farhoumand, P.D. Hodgson, S. Khoddam, Mater. Sci. 48, 2454 (2013)

    Article  CAS  Google Scholar 

  28. Design Expert 11, Stat-Ease, Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Doniavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbari, G., Doniavi, A., Shahbaz, M. et al. Effect of Processing Parameters on the Strain Inhomogeneity and Processing Load in Vortex Extrusion of Al–Mg–Si Alloy. Met. Mater. Int. 27, 683–690 (2021). https://doi.org/10.1007/s12540-020-00761-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00761-2

Keywords

Navigation