Skip to main content
Log in

Inducing apoptosis through upregulation of p53: structure–activity exploration of anthraquinone analogs

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

We previously reported a series of p53-elevating anthraquinone compounds with considerable cytotoxicity for acute lymphoblastic leukemia (ALL) cells. To further develop this class of compounds, we examined the effect of a few key structural features on the anticancer structure–activity relationship (SAR) in ALL cells. The active analogs showed comparable cytotoxicity and upregulation of p53 but did not induce significant downregulation of MDM2 as seen with the lead compound AQ-101, indicating the importance of the anthraquinone core scaffold for MDM2 regulation. The result from the current study not only contributes to the SAR framework of these anthraquinone derivatives but also opens up new chemical space for further optimization work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anifowose A, Yuan Z, Yang X, Pan Z, Zheng Y, Zhang Z, Wang B (2020) Upregulation of p53 through induction of MDM2 degradation: amino acid prodrugs of anthraquinone analogs. Bioorg Med Chem Lett 30:126786

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  • Chang HY, Rodriguez V, Narboni G, Bodey GP, Luna MA, Freireich EJ (1976) Causes of death in adults with acute leukemia. Medicine 55:259–268

    Article  CAS  Google Scholar 

  • Draganov AB, Yang X, Anifowose A, De La Cruz LKC, Dai C, Ni N, Chen W, De Los Santos Z, Gu L, Zhou M, Wang B (2019) Upregulation of p53 through induction of MDM2 degradation: anthraquinone analogs. Bioorg Med Chem 27:3860–3865

    Article  CAS  Google Scholar 

  • Etzel RA (2016) Foreword: childhood leukemia and primary prevention. Curr Probl Pediatr Adolesc Health Care 46:315–316

    Article  Google Scholar 

  • Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R (1991) p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88:5413–5417

    Article  CAS  Google Scholar 

  • Gu L, Zhang H, Liu T, Draganov A, Yi S, Wang B, Zhou M (2018) Inhibition of MDM2 by a rhein-derived compound AQ-101 suppresses cancer development in SCID mice. Mol Cancer Ther 17:497–507

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  Google Scholar 

  • Hunger SP, Teachey DT, Grupp S, Aplenc R (2020) 93—Childhood leukemia. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE (eds) Abeloff’s clinical oncology, 6th edn. Content Repository Only, Philadelphia, p 1748–1764.e1744

    Google Scholar 

  • Hutter JJ (2010) Childhood leukemia. Pediatr Rev 31:234–241

    Article  Google Scholar 

  • Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, Moran M, Lucas M, Lin T, Hackbarth ML, Proffitt JH, Lucas D, Grever MR, Byrd JC (2004) Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 103:3278–3281

    Article  CAS  Google Scholar 

  • Malik EM, Muller CE (2016) Anthraquinones as pharmacological tools and drugs. Med Res Rev 36:705–748

    Article  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  Google Scholar 

  • Prokocimer M, Molchadsky A, Rotter V (2017) Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130:699–712

    Article  CAS  Google Scholar 

  • Roberts AM, Miyamoto DK, Huffman TR, Bateman LA, Ives AN, Akopian D, Heslin MJ, Contreras CM, Rape M, Skibola CF, Nomura DK (2017) Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem Biol 12:899–904

    Article  CAS  Google Scholar 

  • Slats AM, Egeler RM, van der Does-van den Berg A, Korbijn C, Hahlen K, Kamps WA, Veerman AJ, Zwaan CM (2005) Causes of death–other than progressive leukemia–in childhood acute lymphoblastic (ALL) and myeloid leukemia (AML): the Dutch Childhood Oncology Group experience. Leukemia 19:537–544

    Article  CAS  Google Scholar 

  • Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7:e577

    Article  CAS  Google Scholar 

  • Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253

    Article  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96

    Article  CAS  Google Scholar 

  • Wang L, Zhao J, Yao Y, Wang C, Zhang J, Shu X, Sun X, Li Y, Liu K, Yuan H, Ma X (2017) Covalent binding design strategy: a prospective method for discovery of potent targeted anticancer agents. Eur J Med Chem 142:493–505

    Article  CAS  Google Scholar 

  • Watts J, Nimer S (2018) Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Res 7:1196–1209

    Article  Google Scholar 

  • Yang X, Sun G, Yang C, Wang B (2011) Novel rhein analogues as potential anticancer agents. ChemMedChem 6:2294–2301

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Ma S (2018) Racial differences in four leukemia subtypes: comprehensive descriptive epidemiology. Sci Rep 8:548

    Article  Google Scholar 

  • Zou GM (2007) Cancer stem cells in leukemia, recent advances. J Cell Physiol 213:440–444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Institutes of Health (CA180519) is gratefully acknowledged. We also thank the Center for Diagnostics and Therapeutics for a University fellowship to AA, the Georgia Research Alliance for an Eminent Scholar endowment, and GSU internal support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxiao Yang or Binghe Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Professor Robert P. Hanzlik on the occasion of his retirement after 49 years of service on the faculty of the Department of Medicinal Chemistry, University of Kansas.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anifowose, A., Agbowuro, A.A., Tripathi, R. et al. Inducing apoptosis through upregulation of p53: structure–activity exploration of anthraquinone analogs. Med Chem Res 29, 1199–1210 (2020). https://doi.org/10.1007/s00044-020-02563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02563-y

Keywords

Navigation