Skip to main content
Log in

Effects of triceps surae fatigue and weight training level on gait variability and local stability in young adults

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Muscle fatigue negatively affects gait, and the changes in gait pattern due to muscle fatigue is influenced by which muscles are fatigued and pre-existing physical activity levels. However, how these factors alter gait stability and variability, measures related to risk of fall, remains unclear. To explore how muscular fatigue affects linear and nonlinear gait features in young adults, the effects of triceps surae fatigue and weight training level on gait variability and local stability, as well as a 12-min recovery time of post-fatigue period, were evaluated in young adults (trained and untrained groups). Some features were estimated, i.e., (i) step length (SL) and step frequency (SF), (ii) average standard deviation of trunk acceleration along strides (VAR), and (iii) local dynamic stability (LDS; maximum Lyapunov exponent). LDS presented a significant increase in the anterior-posterior direction with recovery to trained group. SL and SF changed immediately post-fatigue and recovered for both groups, while VAR increased significantly in all directions, with a recovery in the vertical direction for both groups and in the medial-lateral direction for trained group. Localized fatigue affected the analyzed gait variables independent of the participant’s training condition, and an interval of 12 min does not seem to be enough for a complete recovery, suggesting a longer recovery period after tasks involving localized triceps surae fatigue to guarantee basal levels of gait variability and local stability.

Flow chart of the experimental protocol. A) Pre-fatigue: 4 min walking at PWS. B) Post-fatigue: first 4 min walking after fatigue protocol. C) Post-fatigue: second 4 min walking after fatigue protocol. D) Post-fatigue: third 4 min walking after fatigue protocol (PWS, preferred walking speed; AP, anterior-posterior; V, vertical; ML, medial-lateral).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bigland-Ritchie BR, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699. https://doi.org/10.1002/mus.880070902

    Article  CAS  PubMed  Google Scholar 

  2. Swaen GMH, Van Amelsvoort LGPM, Bültmann U, Kant IJ (2003) Fatigue as a risk factor for being injured in an occupational accident: results from the Maastricht Cohort Study. Occup Environ Med 60:i88–i92. https://doi.org/10.1136/oem.60.suppl_1.i88

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bentley TA, Haslam RA (2001) Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery of mail. Appl Ergon 32:127–134. https://doi.org/10.1016/s0003-6870(00)00048-x

    Article  CAS  PubMed  Google Scholar 

  4. Cohen HH, Lin L jean (1991) A retrospective case-control study of ladder fall accidents. J Safety Res 22:21–30. https://doi.org/10.1016/0022-4375(91)90010-S

  5. Forestier N, Teasdale N, Nougier V (2002) Alteration of the position sense at the ankle induced by muscular fatigue in humans. Med Sci Sports Exerc 34:117–122. https://doi.org/10.1097/00005768-200201000-00018

    Article  PubMed  Google Scholar 

  6. Gribble PA, Hertel J (2004) Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil 85:589–592. https://doi.org/10.1016/j.apmr.2003.06.031

    Article  PubMed  Google Scholar 

  7. Gates DH, Dingwell JB (2011) The effects of muscle fatigue and movement height on movement stability and variability. Exp Brain Res 209:525–536. https://doi.org/10.1007/s00221-011-2580-8

    Article  PubMed  Google Scholar 

  8. Oxley J, O’Hern S, Burtt D, Rossiter B (2018) Falling while walking: a hidden contributor to pedestrian injury. Accid Anal Prev 114:77–82. https://doi.org/10.1016/j.aap.2017.01.010

    Article  PubMed  Google Scholar 

  9. Schepers P, den Brinker B, Methorst R, Helbich M (2017) Pedestrian falls: a review of the literature and future research directions. J Safety Res 62:227–234. https://doi.org/10.1016/j.jsr.2017.06.020

    Article  PubMed  Google Scholar 

  10. Granacher U, Wolf I, Wehrle A, Bridenbaugh S, Kressig RW (2010) Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults. J Neuroeng Rehabil 7:56. https://doi.org/10.1186/1743-0003-7-56

    Article  PubMed  PubMed Central  Google Scholar 

  11. Helbostad JL, Leirfall S, Moe-nilssen R, Sletvold O (2007) Physical fatigue effects gait characteristics in older persons. J Gerontol Med Sci 62:1010–1015

    Article  Google Scholar 

  12. Barbieri FA, Dos Santos PCR, Lirani-Silva E et al (2013) Systematic review of the effects of fatigue on spatiotemporal gait parameters. J. Back Musculoskelet. Rehabil. 26:125–131

    Article  Google Scholar 

  13. Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823. https://doi.org/10.1152/japplphysiol.00091.2002

    Article  CAS  PubMed  Google Scholar 

  14. Graham MT, Rice CL, Dalton BH (2016) Motor unit firing rates of the gastrocnemii during maximal brief steady-state contractions in humans. J Electromyogr Kinesiol 26:82–87. https://doi.org/10.1016/j.jelekin.2015.11.005

    Article  PubMed  Google Scholar 

  15. Harkins KM, Mattacola CG, Uhl TL et al (2005) Effects of 2 ankle fatigue models on the duration of postural stability dysfunction. J Athl Train 40:191–194

    PubMed  PubMed Central  Google Scholar 

  16. Reimer RC, Wikstrom EA (2010) Functional fatigue of the hip and ankle musculature cause similar alterations in single leg stance postural control. J Sci Med Sport 13:161–166. https://doi.org/10.1016/j.jsams.2009.01.001

    Article  PubMed  Google Scholar 

  17. Vieira MF, de Sá e Souza GS, Lehnen GC, et al (2016) Effects of general fatigue induced by incremental maximal exercise test on gait stability and variability of healthy young subjects. J Electromyogr Kinesiol 30:161–167. https://doi.org/10.1016/j.jelekin.2016.07.007

  18. Hamacher D, Torpel A, Hamacher D, Schega L (2016) The effect of physical exhaustion on gait stability in young and older individuals. Gait Posture 48:137–139. https://doi.org/10.1016/j.gaitpost.2016.05.007

    Article  PubMed  Google Scholar 

  19. Toebes MJP, Hoozemans MJM, Dekker J, van Dieën JH (2014) Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly. Gait Posture 40:215–219. https://doi.org/10.1016/j.gaitpost.2014.03.194

    Article  PubMed  Google Scholar 

  20. Terrier P, Reynard F (2015) Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 41:170–174. https://doi.org/10.1016/j.gaitpost.2014.09.024

    Article  PubMed  Google Scholar 

  21. Haskell WL, Lee I-M, Pate RR et al (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39:1423–1434. https://doi.org/10.1249/mss.0b013e3180616b27

    Article  PubMed  Google Scholar 

  22. Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR (2020) Effects of supervised high-intensity resistance and impact training or machine-based isometric training on regional bone geometry and strength in middle-aged and older men with low bone mass: the LIFTMOR-M semi-randomised controlled trial. Bone 136:115362. https://doi.org/10.1016/j.bone.2020.115362

    Article  PubMed  Google Scholar 

  23. Welling W, Benjaminse A, Lemmink K, Dingenen B, Gokeler A (2019) Progressive strength training restores quadriceps and hamstring muscle strength within 7 months after ACL reconstruction in amateur male soccer players. Phys Ther Sport 40:10–18. https://doi.org/10.1016/j.ptsp.2019.08.004

    Article  PubMed  Google Scholar 

  24. Acosta-Manzano P, Rodriguez-Ayllon M, Acosta FM, et al (2020) Beyond general resistance training. hypertrophy versus muscular endurance training as therapeutic interventions in adults with type 2 diabetes mellitus: a systematic review and meta-analysis. Obes. Rev.

  25. Winett RA, Carpinelli RN (2001) Potential health-related benefits of resistance training. Prev. Med. (Baltim). 33:503–513

    Article  CAS  Google Scholar 

  26. Westcott WL (2012) Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 11:209–216. https://doi.org/10.1249/JSR.0b013e31825dabb8

    Article  PubMed  Google Scholar 

  27. Cortes N, Onate J, Morrison S (2014) Differential effects of fatigue on movement variability. Gait Posture 39:888–893. https://doi.org/10.1016/j.gaitpost.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  28. Barbieri FA, Beretta SS, Pereira VAI, Simieli L, Orcioli-Silva D, dos Santos PCR, van Dieën JH, Gobbi LTB (2015) Recovery of gait after quadriceps muscle fatigue. Gait Posture 43:270–274. https://doi.org/10.1016/j.gaitpost.2015.10.015

    Article  PubMed  Google Scholar 

  29. Bruijn SM, Van Dieën JH (2018) Control of human gait stability through foot placement. J R Soc Interface:15

  30. Arvin M, Hoozemans MJM, Burger BJ, Rispens SM, Verschueren SMP, van Dieën JH, Pijnappels M (2015) Effects of hip abductor muscle fatigue on gait control and hip position sense in healthy older adults. Gait Posture 42:545–549. https://doi.org/10.1016/j.gaitpost.2015.08.011

    Article  PubMed  Google Scholar 

  31. Hunter SK (2016) The relevance of sex differences in performance fatigability. Med Sci Sports Exerc 48:2247–2256. https://doi.org/10.1249/MSS.0000000000000928

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dingwell JB, Marin LC (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452. https://doi.org/10.1016/j.jbiomech.2004.12.014

    Article  PubMed  Google Scholar 

  33. van Melick N, Meddeler BM, Hoogeboom TJ, Nijhuis-van der Sanden MWG, van Cingel REH (2017) How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PLoS One 12:e0189876. https://doi.org/10.1371/journal.pone.0189876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  Google Scholar 

  35. Vieira MF, Rodrigues FB, de Sá e Souza GS, et al (2017) Gait stability, variability and complexity on inclined surfaces. J Biomech 54:73–79. https://doi.org/10.1016/j.jbiomech.2017.01.045

  36. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D Nonlinear Phenom 65:117–134. https://doi.org/10.1016/0167-2789(93)90009-P

    Article  Google Scholar 

  37. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L (eds) Dynamical systems and turbulence, Warwick 1980. Springer, Berlin, Heidelberg, pp 366–381

    Chapter  Google Scholar 

  38. Fraser S (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A, Gen Phys 33:1134–1140

    Article  CAS  Google Scholar 

  39. Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403–3411. https://doi.org/10.1103/PhysRevA.45.3403

    Article  CAS  PubMed  Google Scholar 

  40. Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge Univ. Press 388

  41. Terrier P, Dériaz O (2013) Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability. Front Physiol 4:SEP:1–13. https://doi.org/10.3389/fphys.2013.00230

    Article  Google Scholar 

  42. Bruijn SM, Meijer OG, Beek PJ, Van Dieen JH (2013) Assessing the stability of human locomotion: a review of current measures. J R Soc Interface 10:20120999. https://doi.org/10.1098/rsif.2012.0999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH (2013) Assessing gait stability: the influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J Biomech 46:137–141. https://doi.org/10.1016/j.jbiomech.2012.10.032

    Article  PubMed  Google Scholar 

  44. Reynard F, Terrier P (2014) Local dynamic stability of treadmill walking: intrasession and week-to-week repeatability. J Biomech 47:74–80. https://doi.org/10.1016/j.jbiomech.2013.10.011

    Article  PubMed  Google Scholar 

  45. Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863. https://doi.org/10.1063/1.1324008

    Article  PubMed  Google Scholar 

  46. Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 123:27–32

    Article  CAS  Google Scholar 

  47. Prince F, Winter D, Stergiou P, Walt S (1994) Anticipatory control of upper body balance during human locomotion. Gait Posture 2:19–25. https://doi.org/10.1016/0966-6362(94)90013-2

    Article  Google Scholar 

  48. van Emmerik REA, Ducharme SW, Amado A, Hamill J (2016) Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Heal Sci 5:1–11. https://doi.org/10.1016/j.jshs.2016.01.013

    Article  Google Scholar 

  49. Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Miffin, Boston

    Google Scholar 

  50. Bruijn SM, van Dieën JH (2018) Control of human gait stability through foot placement. J R Soc Interface 15:20170816. https://doi.org/10.1098/rsif.2017.0816

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allet L, Kim H, Ashton-Miller JA, Richardson JK (2012) Which lower limb frontal plane sensory and motor functions predict gait speed and efficiency on uneven surfaces in older persons with diabetic neuropathy? PM&R 4:726–733. https://doi.org/10.1016/j.pmrj.2012.05.002

    Article  Google Scholar 

  52. Brach JS, Berthold R, Craik R, VanSwearingen JM, Newman AB (2001) Gait variability in community-dwelling older adults. J Am Geriatr Soc 49:1646–1650

    Article  CAS  Google Scholar 

  53. Menz HB, Lord SR, Fitzpatrick RC (2003) Age-related differences in walking stability. Age Ageing 32:137–142. https://doi.org/10.1093/ageing/32.2.137

    Article  PubMed  Google Scholar 

  54. Hak L, Houdijk H, Beek PJ, Van Dieën JH (2013) Steps to take to enhance gait stability: the effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS One 8. https://doi.org/10.1371/journal.pone.0082842

  55. Linnamo V, Häkkinen K, Komi PV (1998) Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol Occup Physiol 77:176–181

    Article  CAS  Google Scholar 

  56. Bruijn SM, van Dieën JH, Meijer OG, Beek PJ (2009) Is slow walking more stable? J Biomech 42:1506–1512. https://doi.org/10.1016/j.jbiomech.2009.03.047

    Article  PubMed  Google Scholar 

  57. Barbieri FA, dos Santos PCR, Vitório R, van Dieën JH, Gobbi LTB (2013) Effect of muscle fatigue and physical activity level in motor control of the gait of young adults. Gait Posture 38:702–707. https://doi.org/10.1016/j.gaitpost.2013.03.006

    Article  PubMed  Google Scholar 

  58. Santos PCR, Gobbi LTB, Silva DO et al (2016) Effects of leg muscle fatigue on gait in patients with Parkinson’s disease and controls with high and low levels of daily physical activity. Gait Posture 47:86–91. https://doi.org/10.1016/j.gaitpost.2016.04.002

    Article  PubMed  Google Scholar 

  59. Bizid R, Margnes E, François Y, Jully JL, Gonzalez G, Dupui P, Paillard T (2009) Effects of knee and ankle muscle fatigue on postural control in the unipedal stance. Eur J Appl Physiol 106:375–380. https://doi.org/10.1007/s00421-009-1029-2

    Article  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the government agencies CAPES (finance code 001), CNPq (445567/2014-7), and FAPEG for supporting this study. AOA and MFV are a Fellow of CNPq, Brazil (304818/2018-6, 306205/2017-3, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Barbosa Rodrigues.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehnen, G.C.S., Rodrigues, F.B., Galvão, J.M.A. et al. Effects of triceps surae fatigue and weight training level on gait variability and local stability in young adults. Med Biol Eng Comput 58, 1791–1802 (2020). https://doi.org/10.1007/s11517-020-02196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02196-8

Keywords

Navigation