Skip to main content
Log in

A comparative study on the optimization of the fatty acids pretreatment parameters using central composite design with response surface methodology

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Comparative studies on esterification methods for the quantitative determination of fatty acids (FAs) were accomplished using a rotatable central composite design (RCCD). The effect of the three methylation methods on the isomerization of unsaturated fatty acids in gas chromatography analysis was also evaluated. The experimental design showed that the effect of both temperature and duration time of reaction on the recovery of methylation was significant. After optimization, the method was validated and the results for linearity, precision, and limit of detection (LOD) were presented. Methods were similar on account of the fatty acid methyl esters recovery (%) determined (91.30–96.44%). The acid-catalyzed procedures gave no isomerization of conjugated dienes and no artifacts, but artifacts were observed by using a methyl chloroformate reagent. Therefore, the optimized acid-catalyzed methylation process would be more convenient for polyunsaturated fatty acid analysis, whereas methyl chloroformate reagent would be an alternative for fast analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Alberdi-Cedeño, M.L. Ibargoitia, G. Cristillo, P. Sopelana, M.D. Guillén, Food Chem. 221, 1135 (2017)

    Article  Google Scholar 

  2. E.M. Antolin, D.M. Delange, V.G. Canavaciolo, J. Pharm. Biomed. Anal. 46, 194 (2008)

    Article  CAS  Google Scholar 

  3. M. Bahram, L. Shokri, N. Mohseni, Analytical and bioanalytical chemistry. Research. 3, 19 (2016)

    CAS  Google Scholar 

  4. I. Brondz, Anal. Chim. Acta 465, 1 (2002)

    Article  CAS  Google Scholar 

  5. N. Cebi, M.T. Yilmaz, O. Sagdic, H. Yuce, E. Yelboga, Food Chem. 225, 188 (2017)

    Article  CAS  Google Scholar 

  6. W. W. Christie. Gas chromatography and lipids, Oily (1989)

  7. S. Cooper, L. Sinclair, R. Wilkinson, K. Hallett, M. Enser, J. Wood, J. Anim. Sci. 82, 1461 (2004)

    Article  CAS  Google Scholar 

  8. E. Dawidowicz, T. Thompson, J. Lipid Res. 12, 636 (1971)

    CAS  PubMed  Google Scholar 

  9. K. Farhadi, M. Bahram, D. Shokatynia, F. Salehiyan, Anal. Lett. 41, 2097 (2008)

    Article  CAS  Google Scholar 

  10. W.K. Fulk, M.S. Shorb, J. Lipid Res. 11, 276 (1970)

    CAS  PubMed  Google Scholar 

  11. S. Gorji, M. Bahram, Anal. Methods 2, 948 (2010)

    Article  CAS  Google Scholar 

  12. S. Herzallah, M. Humeid, K. Al-Ismail, J. Dairy Sci. 88, 1301 (2005)

    Article  CAS  Google Scholar 

  13. E. Horning et al., J. Lipid Res. 5, 20 (1964)

    CAS  PubMed  Google Scholar 

  14. P. Hušek, P. Šimek, E. Tvrzická, Anal. Chim. Acta 465, 433 (2002)

    Article  Google Scholar 

  15. J.X. Kang, J. Wang, L. Wu, Z.B. Kang, Nature 427, 504 (2004)

    Article  CAS  Google Scholar 

  16. J.X. Kang, J. Wang, BMC Biochem. 6, 5 (2005)

    Article  Google Scholar 

  17. J.K. Kramer, V. Fellner, M.E. Dugan, F.D. Sauer, M.M. Mossoba, M.P. Yurawecz, Lipids 32, 1219 (1997)

    Article  CAS  Google Scholar 

  18. B. Muir et al., J. Chromatogr. A 1068, 315 (2005)

    Article  CAS  Google Scholar 

  19. G. Nagesha, B. Manohar, K.U. Sankar, The J. Supercrit. Fluids. 32, 137 (2004)

    Article  CAS  Google Scholar 

  20. D. Panavaitė, E. Adomavičiūtė, V. Vičkačkaitė, Chemija 17, 61 (2006)

    Google Scholar 

  21. D. Panavaitė, A. Padarauskas, V. Vičkačkaitė, Anal. Chim. Acta 571, 45 (2006)

    Article  Google Scholar 

  22. J. Peris-Vicente, J.G. Adelantado, M.D. Carbó, R.M. Castro, F.B. Reig, J. Chromatogr. A 1101, 254 (2006)

    Article  CAS  Google Scholar 

  23. W. Si, Y.P. Chen, J. Zhang, Z.-Y. Chen, H.Y. Chung, Food Chem. 239, 1117 (2018)

    Article  CAS  Google Scholar 

  24. Y. Wang, H. Sunwoo, G. Cherian, J. Sim, Poult. Sci. 79, 1168 (2000)

    Article  CAS  Google Scholar 

  25. A. Werner, J. Agric. Food Chem. 40, 181701820 (1992)

    Article  Google Scholar 

  26. S.A. Werner, L.O. Luedecke, T.D. Shultz, J. Agric. Food Chem. 40, 1817 (1992)

    Article  CAS  Google Scholar 

  27. M. Yamasaki, K. Kishihara, I. Ikeda, M. Sugano, K. Yamada, J. Am. Oil. Chem. Soc. 76, 933 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Animal Science Research Institute of Iran (ASRI) (Project No. 2-13-13-87044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Borazjani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borazjani, M., Bahram, M. & Banabazi, M.H. A comparative study on the optimization of the fatty acids pretreatment parameters using central composite design with response surface methodology. J IRAN CHEM SOC 17, 2877–2883 (2020). https://doi.org/10.1007/s13738-020-01967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01967-2

Keywords

Navigation