Skip to main content
Log in

Rapid detection of antibiotic resistance in Salmonella with screen printed carbon electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Salmonella, one of the most common foodborne pathogens, poses a serious threat to human health. In recent years, the antibiotic resistance of Salmonella has become serious as well, which has strengthened the harm of Salmonella to human health. In this paper, a simple and effective electrochemical approach was developed to obtain profile of the antimicrobial susceptibility. Screen-printed carbon electrodes (SPCEs) were used to detect various concentrations of target bacteria at the same time, which have good stability, low cost, and easy mass production. The electroactive redox, resazurin, was used to monitor levels of metabolically active bacteria. As a demonstration, the antibacterial effect of ofloxacin and penicillin on Salmonella gallinarum (S. gallinarum) isolates was evaluated, and the minimum inhibitory concentration (MIC) was measured as well. In the real sample measurement, the MIC obtained was similar to that obtained by conventional antimicrobial susceptibility testing (AST). In this assay, bacterial activity was quantified sensitively and accurately, and the detection time was greatly reduced compared with conventional AST (16–20 h), which means that metabolic capacity of live bacteria could be observed after 1 h of incubation. We were able to clearly detect bacteria above 102 CFU/m. This method aims to nonspecific and can be widely applied to the detection of a variety of drug-resistant bacteria, providing an experimental basis for the rational use of antibiotics and bacterial resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carvalho FC, Sousa OV, Carvalho EM, Hofer E, Vieira RH (2013) Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil. J Pathogens 4:1–5

    Article  Google Scholar 

  2. Peek SE, Hartmann FA, Thomas CB, Nordlund KV (2004) Isolation of Salmonella spp from the environment of dairies without any history of clinical salmonellosis. J Am Vet Med Assoc 225(4):574–577

    Article  PubMed  Google Scholar 

  3. Hurd HS, Mckean JD, Wesley IV, Karriker LA (2001) The effect of lairage on Salmonella isolation from market swine. J Food Prot 64(7):939–944

    Article  CAS  PubMed  Google Scholar 

  4. Braden CR (2006) Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43(4):512–517

    Article  PubMed  Google Scholar 

  5. Feldsine PT, Lienau AH, Leung SC, Mui LA, Humbert F, Bohnert M, Mooijman K, Schulten S, Pi V, Rollier P (2003) Detection of Salmonella in fresh cheese, poultry products, and dried egg products by the ISO 6579 Salmonella culture procedure and the AOAC official method: collaborative study. J AOAC Int 86(2):275–295

    Article  CAS  PubMed  Google Scholar 

  6. Sokolov DM, Sokolov MS (2013) Rapid methods for the genus Salmonella bacteria detection in food and raw materials. Vopr Pitan 82(1):33–40

    CAS  PubMed  Google Scholar 

  7. Velasquez CG, Macklin KS, Kumar S, Bailey M, Ebner PE, Oliver HF, Martin-Gonzalez FS, Singh M (2018) Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poult Sci 97(6)

  8. Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van PS (2018) Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microbial Genomics 4(7)

  9. Jorgensen J, Ferraro M (1998) Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis 26(4):973–980

    Article  CAS  PubMed  Google Scholar 

  10. Mach KE, Wong PK, Liao JC (2011) Biosensor diagnosis of urinary tract infections: a path to better treatment? Trends Pharmacol Sci 32(6):330–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geyer CN, Hanson ND (2013) Rapid PCR amplification protocols decrease the turn-around time for detection of antibiotic resistance genes in gram-negative pathogens. Diag Micr Infec Dis 77(2):113–117

    Article  CAS  Google Scholar 

  12. Strauss C, Endimiani A, Perreten V (2015) A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in gram-positive bacteria. J Microbiol Methods 108:25–30

    Article  CAS  PubMed  Google Scholar 

  13. Hombach M, Jetter M, Blöchliger N, Kolesnik-Goldmann N, Böttger EC (2017) Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother 72(6):1659–1668

    Article  CAS  PubMed  Google Scholar 

  14. Bing L, Yong Q, Andrew G, David MI, Qian L, Jon C, Han-Chang S, Huabing Y (2014) Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal Chem 86(6):3131–3137

    Article  Google Scholar 

  15. Malmberg C, Yuen P, Spaak J, Cars O, Tängdén T, Lagerbäck P (2016) A novel microfluidic assay for rapid phenotypic antibiotic susceptibility testing of bacteria detected in clinical blood cultures. PLoS One 11(12):3131–3137

    Article  Google Scholar 

  16. Kumar K, Giribhattanavar P, Sagar C, Patil S (2017) A rapid and simple resazurin assay to detect minimum inhibitory concentration for first-line drugs of mycobacterium tuberculosis isolated from cerebrospinal fluid. J Glob Antimicrob Re 12:157–161

    Article  Google Scholar 

  17. Kaushik AM, Hsieh K, Chen L, Shin DJ, Liao JC, Wang TH (2017) Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron 97:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keays MC, O'Brien M, Hussain A, Kiely PA, Dalton T (2016) Rapid identification of antibiotic resistance using droplet microfluidics. Bioengineered Bugs 7(2):79–87

    Article  CAS  Google Scholar 

  19. Leonard H, Heuer C, Weizman D, Massad-Ivanir N, Halachmi S, Colodner R, Segal E (2019) Rapid diagnostic susceptibility testing of bacteria and fungi from clinical samples using silicon gratings. Front Biol Detect 10895:1089504

  20. Kamonnaree C, Wipa S, Albert S (2014) Advanced amperometric respiration assay for antimicrobial susceptibility testing. Anal Chem 86(20):10315–10322

    Article  Google Scholar 

  21. Yaroslava C, Victoria S, Svetlana E, Alexander A (2012) Electrochemistry of Escherichia coli JM109: direct electron transfer and antibiotic resistance. Biosens Bioelectron 32(1):219–223

    Article  Google Scholar 

  22. Villalba MI, Stupar P, Chomicki W, Bertacchi M, Dietler G, Arnal L, Vela ME, Yantorno O, Kasas S (2018) Nanomotion detection method for testing antibiotic resistance and susceptibility of slow-growing bacteria. Small 14(4)

  23. Glatzel S, Hezwani M, Kitson PJ, Gromski PS, Schürer S, Cronin L (2016) A portable 3D printer system for the diagnosis and treatment of multidrug-resistant bacteria. Chem 1(3):494–504

    Article  CAS  Google Scholar 

  24. Abeyrathne CD, Huynh DH, Mcintire TW, Nguyen TC, Nasr B, Zantomio D, Chana G, Abbott I, Choong P, Catton M (2016) Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus. Analyst 141(6):1922–1929

    Article  CAS  PubMed  Google Scholar 

  25. Brosel-Oliu S, Mergel O, Uria N, Abramova N, van Rijn P, Bratov A (2019) 3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics. Lab Chip 19(8):1436–1447

    Article  CAS  PubMed  Google Scholar 

  26. Mann TS, Mikkelsen SR (2008) Antibiotic susceptibility testing at a screen-printed carbon electrode array. Anal Chem 80(3):843–848

    Article  CAS  PubMed  Google Scholar 

  27. Hannah S, Addington E, Alcorn D, Shu W, Hoskisson PA, Corrigan DK (2019) Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes. Biosens Bioelectron 145:111696

    Article  CAS  PubMed  Google Scholar 

  28. Castilho AL, Caleffi-Ferracioli KR, Canezin PH, Dias Siqueira VL, de Lima Scodro RB, Cardoso RF (2015) Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay. J Microbiol Methods 111:119–121

    Article  CAS  PubMed  Google Scholar 

  29. Yamanaka K, Vestergaard MC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors 16(10):1761

    Article  Google Scholar 

  30. Munteanu FD, Titoiu AM, Marty JL, Vasilescu A (2018) Detection of antibiotics and evaluation of antibacterial activity with screen-printed electrodes. Sensors 18 (3):901-

  31. Shumyantseva V, Bulko T, Kuzikov A, Masamrekh R, Archakov A (2018) Analysis of l -tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO 2 ). Amino Acids 50 (7):823–829

  32. Ward AC, Hannah AJ, Kendrick SL, Tucker NP, Macgregor G, Connolly P (2018) Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy. Biosens Bioelectron 91(3):166–172

    Google Scholar 

  33. Washe AP, Lozano P (2013) Facile and versatile approaches to enhancing electrochemical performance of screen printed electrodes. Electrochim Acta 91(3):166–172

    Article  CAS  Google Scholar 

  34. Eguílaz M, Villalonga R, Rivas G (2018) Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: bioelectrocatalysis of hemoglobin and biosensing applications. Biosens Bioelectron 111:144–151

    Article  PubMed  Google Scholar 

  35. Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, Sun X (2017) Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron 97:345–351

    Article  CAS  PubMed  Google Scholar 

  36. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28

    Article  CAS  Google Scholar 

  37. Juan-Carlos P, Anandi M, Mirtha C, Humberto G, Jean S, Françoise P (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother 46(8):2720–2722

    Article  Google Scholar 

  38. Çakir S, Arslan EY (2010) Voltammetry of resazurin at a mercury electrode. Chem Pap 64(3):386–394

    Article  Google Scholar 

  39. Khazalpour S, Nematollahi D (2014) Electrochemical study of Alamar Blue (resazurin) in aqueous solutions and room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate at a glassy carbon electrode. RSC Adv 4(17):8431–8438

    Article  CAS  Google Scholar 

  40. Hu C, Dou W, Zhao G (2014) Enzyme immunosensor based on gold nanoparticles electroposition and streptavidin-biotin system for detection of S. pullorum & S. gallinarum. Electrochim Acta 117(complete):239–245

    Article  CAS  Google Scholar 

  41. Safavieh M, Pandya HJ, Venkataraman M, Thirumalaraju P, Kanakasabapathy MK, Singh A, Prabhakar D, Chug MK, Shafiee H (2017) Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microchips with printed electrodes. ACS Appl Mater Interfaces 9(14):12832

  42. Kelley SO, Besant JD, Sargent EH (2015) Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria. Lab Chip 15(13):2799–2807

    Article  PubMed  Google Scholar 

  43. Chalenko Y, Shumyantseva V, Ermolaeva S, Archakov A (2012) Electrochemistry of Escherichia coli JM109: direct electron transfer and antibiotic resistance. Biosens Bioelectron 32(1):219–223

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by the National Key Research and Development Program of China (2017YFC1600102), the Natural Science Foundation of Jiangsu Province (No. BK20190584), the Open Project Program of State Key Laboratory of Dairy Biotechnology (No. SKLDB2019-005), the National first-class discipline program of Food Science and Technology (JUFSTR20180303) and Collaborative Innovation Center for Food Safety and Quality Control.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiadi Sun or Xiulan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Ji, J., Sun, J. et al. Rapid detection of antibiotic resistance in Salmonella with screen printed carbon electrodes. J Solid State Electrochem 24, 1539–1549 (2020). https://doi.org/10.1007/s10008-020-04645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04645-8

Keywords

Navigation