Skip to main content
Log in

On the Well-Posedness of Reduced 3D Primitive Geostrophic Adjustment Model with Weak Dissipation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we prove the local well-posedness and global well-posedness with small initial data of the strong solution to the reduced 3D primitive geostrophic adjustment model with weak dissipation. The term reduced model means that the relevant physical quantities depend only on two spatial variables. The weak dissipation helps us overcome the ill-posedness of the original model. We also prove the global well-posedness of the strong solution to the Voigt \(\alpha \)-regularization of this model, and establish the convergence of the strong solution of the Voigt \(\alpha \)-regularized model to the corresponding solution of the original model. Furthermore, we derive a criterion for existence of finite-time blow-up of the original model with weak dissipation based on Voigt \(\alpha \)-regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Blumen, W.: Geostrophic adjustment. Rev. Geophys. Space Phys. 10, 485–528 (1972)

    ADS  Google Scholar 

  3. Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495–512 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Brenier, Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585–595 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: On the uniqueness of weak solutions of the two-dimensional primitive equations. Differ. Integral Equ. 16, 77–94 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Kazhikhov, A., Lemoine, J.: On the two-dimensional hydrostatic Navier–Stokes equations. SIAM J. Math. Anal. 36, 796–814 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cao, C., Ibrahim, S., Nakanishi, K., Titi, E.S.: Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337, 473–482 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Cao, C., Li, J., Titi, E.S.: Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch. Ration. Mech. Anal. 214, 35–76 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Cao, C., Li, J., Titi, E.S.: Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. J. Differ. Equ. 257, 4108–4132 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity. Commun. Pure Appl. Math. 69, 1492–1531 (2016)

    MATH  Google Scholar 

  11. Cao, C., Li, J., Titi, E.S.: Strong solutions to the 3D primitive equations with only horizontal dissipation: near \(H^1\) initial data. J. Funct. Anal. 272(11), 4606–4641 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. arXiv:1703.02512v1 [math.AP] (2017)

  13. Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208, 985–1004 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Cao, C., Titi, E.S.: Regularity “in large” for the 3D Salmon’s planetary geostrophic model of ocean dynamics. Math. Clim. Weather Forecast. 6(1), 1–15 (2020)

    MathSciNet  Google Scholar 

  16. Cao, C., Titi, E.S.: Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusivity. Commun. Math. Phys. 310, 537–568 (2012)

    ADS  MATH  Google Scholar 

  17. Cao, Y., Lunasin, E., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Weinan, E., Enquist, B.: Blow up of solutions to the unsteady Prandtl equation. Commun. Pure Appl. Math. 50, 1287–1293 (1997)

    Google Scholar 

  19. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Gérard-Varet, D., Masmoudi, N., Vicol, V.: Well-Posedness of the Hydrostatic Navier–Stokes Equations. Preprint, arXiv:1804.04489

  21. Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Gill, A.E.: Adjustment under gravity in a rotating channel. J. Fluid Mech. 77, 603–621 (1976)

    ADS  Google Scholar 

  23. Gill, A.E.: Atmosphere—Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  24. Grenier, E.: On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal. 33(5), 965–970 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. Integral Equ. 14, 1381–1408 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Han-Kwan, D., Nguyen, T.: Ill-posedness of the hydrostatic Euler and singular Vlasov equations. Arch. Ration. Mech. Anal. 221(3), 1317–1344 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Hieber, M., Kashiwabara, T.: Global well-posedness of the three-dimensional primitive equations in \(L^p\)-space. Arch. Ration. Mech. Anal. 221, 1077–1115 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Hermann, A.J., Owens, W.B.: Energetics of gravitational adjustment in mesoscale chimneys. J. Phys. Oceanogr. 23, 346–371 (1993)

    ADS  Google Scholar 

  29. Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  30. Kobelkov, G.M.: Existence of a solution in the large for the 3D large-scale ocean dynamics equaitons. C. R. Math. Acad. Sci. Paris 343, 283–286 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Kuo, A.C., Polvani, L.M.: Time-dependent fully nonlinear geostrophic adjustment. J. Phys. Oceanogr. 27, 1614–1634 (1997)

    ADS  Google Scholar 

  32. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.: On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Kukavica, I., Temam, R., Vicol, V., Ziane, M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719–1746 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Kukavica, I., Ziane, M.: The regularity of solutions of the primitive equations of the ocean in space dimension three. C. R. Math. Acad. Sci. Paris 345, 257–260 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20, 2739–2753 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Larios, A., Petersen, M., Titi, E.S., Wingate, B.: A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization. Theor. Comput. Fluid Dyn. 32(1), 23–34 (2018)

    MathSciNet  Google Scholar 

  38. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14(2/3), 603–627 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Li, J., Titi, E.S.: Recent advances concerning certain class of geophysical OWS. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 933–971. Springer, Berlin (2018)

    Google Scholar 

  40. Lions, J.L., Temam, R., Wang, S.: New formulations of the primitive equations of the atmosphere and appliations. Nonlinearity 5, 237–288 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lions, J.L., Temam, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lions, J.L., Temam, R., Wang, S.: Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl. 74, 105–163 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Masmoudi, N., Wong, T.: On the \(H^s\) theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Masmoudi, N., Wong, T.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Oleinik, O.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30(951–974), 1966 (1967)

    MathSciNet  Google Scholar 

  46. Plougonven, R., Zeitlin, V.: Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratified fluid. Geophys. Astrophys. Fluid Dyn. 99, 101–135 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Renardy, M.: Ill-posedness of the hydrostatic Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877–886 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Rossby, C.G.: The mutual adjustment of pressure and velocity distribution in certain simple current systems, II. J. Mar. Res. 1, 239–263 (1938)

    Google Scholar 

  49. Samelson, R., Vallis, G.: A simple friction and diffusion scheme for planetary geostrophic basin models. J. Phys. Oceanogr. 27, 186–194 (1997)

    ADS  Google Scholar 

  50. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  51. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pure Appl. 146, 65–96 (1987)

    MATH  Google Scholar 

  52. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  53. Wong, T.K.: Blowup of solutions of the hydrostatic Euler equations. Proc. Am. Math. Soc. 143(3), 1119–1125 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of E.S.T. was supported in part by the Einstein Stiftung/Foundation Berlin, through the Einstein Visiting Fellow Program, and by the John Simon Guggenheim Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quyuan Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by M. Hieber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Lin, Q. & Titi, E.S. On the Well-Posedness of Reduced 3D Primitive Geostrophic Adjustment Model with Weak Dissipation. J. Math. Fluid Mech. 22, 32 (2020). https://doi.org/10.1007/s00021-020-00495-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00495-6

Keywords

Mathematics Subject Classification

Navigation