Skip to main content
Log in

Melt processing of ethylene–vinyl acetate/banana starch/Cloisite 20A organoclay nanocomposite films: structural, thermal and composting behavior

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This work shows the preparation of ethylene vinyl acetate copolymer/banana starch/Cloisite 20A organoclay (EVA/starch/C20A) nanocomposites by melt processing. Wide angle X-ray diffraction (WAXD), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry and thermogravimetric analysis were used to characterize the obtained nanocomposites. Mechanical properties were also determined. In addition, the performance of the nanocomposite films under composting was preliminarily studied; it was conducted using the soil burial test method. Despite knowing that the starch is difficult to process by extrusion, nanocomposite films with high homogeneity were obtained. In this case, C20A organoclay acts as an effective surfactant to make the starch natural polymer compatible with the EVA synthetic polymer. The good compatibility between EVA, starch and C20A clay was also deduced by the formation of intercalated and intercalated-exfoliated structures determined by WAXD and FE-SEM. Physical evidence of the damage in EVA/starch/C20A nanocomposite films after the composting test was observed. It is worth noting that despite the absence of starch, the EVA/C20A nanocomposite film, used as a control, also showed surface damage. This behavior is related to the organic modifier linked to clay C20A, which contains molecules derived from fatty acids that can be used as a food source for microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154

    CAS  Google Scholar 

  2. Liu X, Lei L, Hou JW, Tang MF, Guo SR, Wang ZM, Chen KM (2011) Evaluation of two polymeric blends (EVA/PLA and EVA/PEG) as coating film materials for paclitaxel-eluting stent application. J Mater Sci Mater Med 22:327–337

    CAS  PubMed  Google Scholar 

  3. Jiang Z, Hu C, Easa SM, Zheng X, Zhang Y (2017) Evaluation of physical, rheological, and structural properties of vulcanized EVA/SBS modified bitumen. J Appl Polym Sci 44850:1–10

    Google Scholar 

  4. Zhang L, Li CZ, Zhou Q (2007) Aluminium hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size. J Mater Sci 42:4227–4232

    CAS  Google Scholar 

  5. El Hage R, Viretto A, Sonnier R, Ferry L, Lopez-Cuesta JM (2014) Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers. Polym Degrad Stabil 108:56–67

    Google Scholar 

  6. Tlili R, Cecen V, Krupa I, Boudenne A, Ibos L, Candau Y, Novák I (2011) Mechanical and thermophysical properties of EVA copolymer filled with nickel particles. Polym Compos 32:727–736

    CAS  Google Scholar 

  7. Ramesan MT (2014) Dynamic mechanical properties, magnetic and electrical behavior of iron oxide/ethylene vinyl acetate nanocomposites. Polym Compos 35:1989–1996

    CAS  Google Scholar 

  8. Ramesan MT (2014) Fabrication, characterization, and properties of poly(ethylene-co-vinyl acetate)/magnetite nanocomposites. J Appl Polym Sci 131:40116

    Google Scholar 

  9. Ramesan MT (2015) Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethylene vinyl acetate nanocomposites. Int J Plast Technol 19:368–380

    CAS  Google Scholar 

  10. Zhang W, Chen D, Zhao Q, Fang Y (2003) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer 44:7953–7961

    CAS  Google Scholar 

  11. Chaudhary DS, Prasad R, Gupta RK, Bhattacharya SN (2005) Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites. Thermochim Acta 433:187–195

    CAS  Google Scholar 

  12. Peeterbroeck S, Alexandre M, Jerome R, Dubois PH (2005) Poly(ethylene-co-vinyl acetate)/clay nanocomposites: effect of clay nature and organic modifiers on morphology, mechanical and thermal properties. Polym Degrad Stabil 90:288–294

    CAS  Google Scholar 

  13. Wilson R, Plivelic TS, Ramya P, Ranganathaiah C, Kariduraganavar MY, Sivasankarapillai AK, Thomas S (2011) Influence of clay content and amount of organic modifiers on morphology and pervaporation performance of EVA/Clay nanocomposites. Ind Eng Chem Res 50:3986–3993

    CAS  Google Scholar 

  14. Osman AF, Fitri TFM, Rakibuddin Md, Hashim F, Johari SATT, Ananthakrishnan R, Ramli R (2017) Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer. Mater Sci Eng C 74:194–206

    CAS  Google Scholar 

  15. Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH (2016) Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: correlation with microstructure and thermal properties. Compos Part B Eng 273:273–284

    Google Scholar 

  16. Marini J, Branciforti MC, Alves RMV, Bretas RES (2010) Effect of EVA as compatibilizer on the mechanical properties, permeability characteristics, lamellae orientation, and long period of blown films of HDPE/Clay nanocomposites. J Appl Polym Sci 118:3340–3350

    CAS  Google Scholar 

  17. Chuayjuljit S, Worawas C (2010) Nanocomposites of EVA/polystyrene nanoparticles/montmorillonite. J Compos Mater 45:631–638

    Google Scholar 

  18. Valera-Zaragoza M, Ramirez-Vargas E, Medellín-Rodríguez FJ, Huerta-Martínez BM (2006) Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polym Degrad Stabil 91:1319–1325

    CAS  Google Scholar 

  19. Ramírez-Vargas E, Valera-Zaragoza M, Sánchez-Valdes S, Hernández-Valdez JS, Ibarra-Castillo FF (2009) Effect of processing conditions on the structural morphology of PP-EP/EVA/organoclay ternary nanocomposites. Polym Bull 62:391–403

    Google Scholar 

  20. Valera-Zaragoza M, Rivas-Vázquez LP, Ramírez-Vargas E, Sánchez-Valdes S, Ramos-deValle LF, Medellín-Rodríguez FJ (2013) Influence of morphology on the dynamic mechanical characteristics of PP-EP/EVA/organoclay nanocomposites. Compos Part B Eng 55:506–512

    CAS  Google Scholar 

  21. Da Róz AL, Ferreira AM, Yamaji FM, Carvalho AJF (2012) Compatible blends of thermoplastic starch and hydrolyzed ethylene-vinyl acetate copolymers. Carbohydr Polym 90:34–40

    PubMed  Google Scholar 

  22. Ma P, Hristova-Bogaerds DG, Schmit P, Goossens JGP, Lemstra PJ (2012) Reactive compatibilization of ethylene-co-vinyl acetate/starch blends. Macromol Res 20:1054–1062

    CAS  Google Scholar 

  23. Sessini V, Raquez JM, Kenny JM, Dubois Ph, Peponi L (2019) Melt-processing of bionanocomposites based on ethylene-co-vinyl acetate and starch nanocrystals. Carbohydr Polym 208:382–390

    CAS  PubMed  Google Scholar 

  24. Kalambur S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22:39–58

    CAS  Google Scholar 

  25. Patel V (2009) Preparation and characterization of biodegradable and compatible ethylene vinyl acetate (EVA)/thermoplastic starch (TPS) blend nanocomposites. Adv Mat Res 67:185–189

    CAS  Google Scholar 

  26. Sessini V, Raquez JM, Re GL, Mincheva R, Kenny JM, Dubois Ph, Peponi L (2016) Multiresponsive shape memory blends and nanocomposites based on starch. ACS Appl Mater Interfaces 8:19197–19201

    CAS  PubMed  Google Scholar 

  27. Sessini V, Arrieta MP, Raquez JM, Dubois Ph, Kenny JM, Peponi L (2019) Thermal and composting degradation of EVA/thermoplastic starch blends and their nanocomposites. Polym Degrad Stabil 159:184–198

    CAS  Google Scholar 

  28. Valera-Zaragoza M, Ramírez-Vargas E, Medellín-Rodríguez FJ (2008) Preparation and morphological evolution of heterophasic PP-EP/EVA/Organoclay nanocomposites: effect of the nanoclay organic modifier. J Appl Polym Sci 108:1986–1994

    CAS  Google Scholar 

  29. Gouveia TIA, Biernacki K, Castro MCR, Goncalves MP, Souza HKS (2019) A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocoll 97:105175

    CAS  Google Scholar 

  30. Rocha-Villarreal V, Hoffmann JF, Vanier NL, Serna-Saldivar SO, García-Lara S (2018) Hydrothermal treatment of maize: changes in physical, chemical, and functional properties. Food Chem 263:225–231

    CAS  PubMed  Google Scholar 

  31. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085

    CAS  Google Scholar 

  32. Colonna P, Buleon A (2010) In: Bertolini AC (ed) Starches: characterization, properties and applications. CRC Press, New York

    Google Scholar 

  33. Wokadala OC, Ray SS, Bandyopadhyay J, Wesley-Smith J, Emmambux NM (2015) Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: the role of nanoclay hydrophobicity. Polymer 71:82–92

    CAS  Google Scholar 

  34. Juarez-Arellano EA, Morales-Toledo LI, Martínez-López V, Urzua-Valenzuela M, Aparicio-Saguilán A, Navarro-Mtz AK (2019) Mechano-hydrolysis of non-conventional substrates for biofuel culture media. Starch 71:1800206

    Google Scholar 

  35. Zanetti M, Camino G, Thomann R, Mülhaupt R (2001) Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42:4501–4507

    CAS  Google Scholar 

  36. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydr Polym 101:20–28

    CAS  PubMed  Google Scholar 

  37. Gilmore DF, Antoun S, Lenz RW, Goodwin S, Austin R, Fuller RC (1992) The fate of biodegradable plastics in municipal leaf compost. J Ind Microbiol 10:199–206

    CAS  Google Scholar 

  38. Torres FG, Troncoso OP, Torres C, Díaz DA, Amaya E (2011) Biodegradability and mechanical properties of starch films from Andrean crops. Int J Biol Macromol 48:603–606

    CAS  PubMed  Google Scholar 

  39. Moura I, Nogueira R, Bounor-Legare V, Machado AV (2014) Effect of PCL and EVA molar mass on the development of sustainable polymers. Soft Mater 12:88–97

    CAS  Google Scholar 

  40. Sonia A, Dasan KP (2013) Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging applications: a study based on barrier and biodegradation behavior. J Food Eng 118:78–89

    CAS  Google Scholar 

  41. Fortunati E, Puglia D, Kenny JM, Haque MdMU, Pracella M (2013) Effect of ethylene-co-vinyl acetate-glycidylmethaacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polym Degrad Stabil 98:2742–2751

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the PRODEP-SEP of Mexico through grant DSA/103.5/15/11097. The authors also thank R. Cedillo-García and B. Huerta-Martínez for their support in experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Valera-Zaragoza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Muñoz, M.A., Valera-Zaragoza, M., Aparicio-Saguilán, A. et al. Melt processing of ethylene–vinyl acetate/banana starch/Cloisite 20A organoclay nanocomposite films: structural, thermal and composting behavior. Iran Polym J 29, 723–733 (2020). https://doi.org/10.1007/s13726-020-00835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00835-3

Keywords

Navigation