Skip to main content
Log in

Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The development of biodegradable materials from microbial exopolysaccharides has extraordinary potential to be applied in food packaging. Kombucha tea is a fermented drink produced by a symbiotic community of bacteria and yeasts, where a by-product based on bacterial cellulose is generated at the surface of the beverage. In this work, novel materials based on the integral kombucha tea by-product were developed from the floating and the intentionally submerged discs of biomass. Each disc was dispersed in water and subjected to ultrasonic homogenization. Films obtained by casting exhibited high homogeneity without cracks with a microstructure composed by a homogeneous and continuous cellulosic matrix of ribbon-shaped nanofibers. Infrared spectroscopy and thermogravimetric analyses indicated the further presence of low and high molecular weight compounds. The increase in glycerol content in the film decreased glass transition temperature and increased flexibility, hydration, and water vapor permeability. Films obtained from submerged discs had an additional plasticization given by substances incorporated during the immersion in the culture medium. Both types of films made from the floating and the submerged disc had a natural and remarkable antioxidant activity of 69 ± 2% and 72 ± 2% of radical inhibition, respectively, probably due to polyphenols or other compounds from the culture medium. Results revealed that using the integral cellulosic by-product of kombucha tea to prepare films could be advantageous due to the cost-effective process (no separation, no purification), interesting physical–chemical properties, and the retention of natural bioactive substances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrieta, M. P., Peltzer, M. A., Garrigós, M. C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486–494.

    Article  CAS  Google Scholar 

  • ASTM D882-97. (1997). Standard test method for tensile properties of thin plastic sheeting. In Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • ASTM-E96. (2016). Standard test methods for water vapor transmission of materials. ASTM International: West Conshohocken.

    Google Scholar 

  • Aziz, S. G., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11(8), 1552–1565.

    Article  CAS  Google Scholar 

  • Barud, H. S., Ribeiro, C. A., Capela, J. M. V., Ribeiro, S. J. L., & Messadeq, Y. (2011). Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 105(2), 421–426.

    Article  CAS  Google Scholar 

  • Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978.

    Article  CAS  Google Scholar 

  • Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids, 68, 136–148.

    Article  CAS  Google Scholar 

  • Cerrutti, P., Roldán, P., García, R. M., Galvagno, M. A., Vázquez, A., & Foresti, M. L. (2016). Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. Journal of Applied Polymer Science, 133, 43109.

    Article  CAS  Google Scholar 

  • Cheng, K.-C., Catchmark, J. M., & Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6), 1033–1045.

    Article  CAS  Google Scholar 

  • Cho, M.-J., & Park, B.-D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry, 17(1), 36–40.

    Article  CAS  Google Scholar 

  • Coma, M. E., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2019). Water kefir grains as an innovative source of materials: study of plasticiser content on film properties. European Polymer Journal, 120, 109234.

    Article  CAS  Google Scholar 

  • Cottet, C., Ramírez Tapias, Y. A., Delgado, J. F., de la Osa, O., Salvay, A. G., & Peltzer, M. A. (2020). Biobased materials from microbial biomass and its derivatives. Materials, 13(6), 1263.

    Article  PubMed Central  Google Scholar 

  • Couchman, P. R., & Karaz, F. E. (1978). A classical thermodynamic discussion of the effect of composition on glass-transition temperature. Macromolecules, 11, 177–188.

    Google Scholar 

  • Coupland, J. N., Shaw, N. B., Monahan, F. J., O’Riordan, E. D., & O’Sullivan, M. (2000). Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. Journal of Food Engineering, 43(1), 25–30.

    Article  Google Scholar 

  • Cuq, B., Gontard, N., Aymard, C., & Guilbert, S. (1997). Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polymer Gels and Networks, 5(1), 1–15.

    Article  CAS  Google Scholar 

  • de Moraes Crizel, T., de Oliveira Rios, A., Alves, D. V., Bandarra, N., Moldão-Martins, M., & Hickmann Flôres, S. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11(3), 536–550.

    Article  CAS  Google Scholar 

  • Delgado, J. F., Sceni, P., Peltzer, M. A., Salvay, A. G., de la Osa, O., & Wagner, J. R. (2016). Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innovative Food Science & Emerging Technologies, 36, 83–91.

    Article  CAS  Google Scholar 

  • Delgado, J. F., Peltzer, M. A., Salvay, A. G., de la Osa, O., & Wagner, J. R. (2018a). Characterization of thermal, mechanical and hydration properties of novel fil ms based on Saccharomyces cerevisiae biomass. Innovative Food Science & Emerging Technologies, 48, 240–247.

    Article  CAS  Google Scholar 

  • Delgado, J. F., Peltzer, M. A., Wagner, J. R., & Salvay, A. G. (2018b). Hydration and water vapour transport properties in yeast biomass based films: a study of plasticiser content and thickness effects. European Polymer Journal, 99, 9–17.

    Article  CAS  Google Scholar 

  • Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., et al. (2017). Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9, 5–10.

    Article  CAS  Google Scholar 

  • Dourado, F., Ryngajllo, M., Jedrzejczak-Krzepkowska, M., Bielecki, S., & Gama, F. M. (2016). Taxonomic review and microbial ecology in bacterial nanocellulose fermentation. In M. Gama, F. Dourado, & S. Bielecki (Eds.), Bacterial nanocellulose: from biotechnology to bio-economy (pp. 1–17). Elsevier B.V.

  • Dufresne, A. (2017). Cellulose nanomaterial reinforced polymer nanocomposites. Current Opinion in Colloid & Interface Science, 29, 1–8.

    Article  CAS  Google Scholar 

  • Dutta, H., & Paul, S. K. (2019). Kombucha drink: production, quality, and safety aspects. In Production and Management of Beverages (pp. 259–288). Woodhead Publishing.

  • Fuller, M. E., Andaya, C., & McClay, K. (2018). Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. Journal of Microbiological Methods, 144, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395–409.

    Article  Google Scholar 

  • Gontard, N., Guilbert, S., & Cuq, J.-L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206–211.

    Article  CAS  Google Scholar 

  • Grand View Research (2020). Kombucha market size, share & trends analysis report by flavor (original, flavored), by distribution channel (supermarkets, health stores, online stores), by region, and segment forecasts, 2020–2027. Retrieved from https://www.grandviewresearch.com/industry-analysis/kombucha-market. Accessed 18 May 2020.

  • Guerrero, P., Retegi, A., Gabilondo, A., & de la Caba, K. (2010). Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering, 100(1), 145–151.

    Article  CAS  Google Scholar 

  • Guggenheim, E. A. (1966). Applications of statistical mechanics (pp. 186–206). Oxford: Claredon Press.

    Google Scholar 

  • Gullo, M., La China, S., Falcone, P. M., & Giudici, P. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885–6898.

    Article  CAS  PubMed  Google Scholar 

  • Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538–550.

    Article  Google Scholar 

  • Johansson, C., Bras, J., Mondragon, I., Nechita, P., Plackett, D., Šimon, P., et al. (2012). Renewable fibers and bio-based materials for packaging applications - a review of recent developments. BioResources, 7, 2506–2552.

    Article  Google Scholar 

  • Jost, V., & Stramm, C. (2016). Influence of plasticizers on the mechanical and barrier properties of cast biopolymer films. Journal of Applied Polymer Science, 133, 42513.

    Article  CAS  Google Scholar 

  • Kim, J., & Adhikari, K. (2020). Current trends in kombucha: marketing perspectives and the need for improved sensory research. Beverages, 6(1), 15.

    Article  Google Scholar 

  • Li, M., & Ye, R. (2017). Edible active packaging for food application: materials and technology. In M. A. Masuelli (Ed.), Biopackaging (1st ed., p. 1). Boca Raton: CRC Press.

    Google Scholar 

  • Li, J., Zhang, L.-P., Peng, F., Bian, J., Yuan, T.-Q., Xu, F., & Sun, R.-C. (2009). Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules, 14(9), 3551–3566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Zhang, F., Liu, Z., Guo, X., Wu, Q., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 11(9), 1695–1702.

    Article  CAS  Google Scholar 

  • Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283–289.

    Article  CAS  Google Scholar 

  • Matveev, Y. I., Grinberg, V. Y., & Tolstoguzov, V. B. (2000). The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids, 14(5), 425–437.

    Article  CAS  Google Scholar 

  • McHugh, T. H., Avena-Bustillo, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.

    Article  CAS  Google Scholar 

  • Moraes, J. O., Scheibe, A. S., Sereno, A., & Laurindo, J. B. (2013). Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 119(4), 800–808.

    Article  CAS  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2014). Antimicrobial properties of ethylene vinyl alcohol/epsilon-polylysine films and their application in surimi preservation. Food and Bioprocess Technology, 7(12), 3548–3559.

    Article  CAS  Google Scholar 

  • Peltzer, M. A., Salvay, A. G., Delgado, J. F., & Wagner, J. R. (2017). Use of edible films and coatings for functional foods developments: a review. In D. L. Nelson (Ed.), Functional foods sources, health effects and future perspectives (pp. 1–26). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Peltzer, M. A., Delgado, J. F., Salvay, A. G., & Wagner, J. R. (2018a). β-Glucan, a promising polysaccharide for bio-based films developments for food contact materials and medical applications. Current Organic Chemistry, 22(12), 1249–1254.

    Article  CAS  Google Scholar 

  • Peltzer, M. A., Salvay, A. G., Delgado, J. F., de la Osa, O., & Wagner, J. R. (2018b). Use of residual yeast cell wall for new biobased materials production: Effect of plasticization on film properties. Food and Bioprocess Technology, 11(11), 1995–2007.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  • Roy, S., Gennadios, A., Weller, C. L., & Testin, R. F. (2000). Water vapor transport parameters of a cast wheat gluten film. Industrial Crops and Products, 11(1), 43–50.

    Article  CAS  Google Scholar 

  • Rozenberga, L., Skute, M., Belkova, L., Sable, I., Vikele, L., Semjonovs, P., Saka, M., Ruklisha, M., & Paegle, L. (2016). Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Carbohydrate Polymers, 144, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Salvay, A. G., Colombo, M. F., & Grigera, J. R. (2003). Hydration effects on the structural properties and haem-haem interactions in haemoglobin. Physical Chemistry Chemical Physics, 5(1), 192–197.

    Article  CAS  Google Scholar 

  • Sangatash, M. M., Niazmand, R., Jamab, M. S., & Modaressi, A. S. (2016). Development of antioxidant active films containing sodium ascorbate (SA) and ethylene vinyl alcohol (EVOH) to extend the shelf life of peanut. Journal of Food Science and Technology, 53, 1766–1783.

    Article  CAS  PubMed  Google Scholar 

  • Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634–643.

    Article  CAS  Google Scholar 

  • Smith, W. F. (1997). Fundamentos de la ciencia e ingeniería de materiales. Segunda edición en español. Madrid: McGraw Hill.

    Google Scholar 

  • Song, J., Birbach, N., & Hinestroza, J. (2012). Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 19(2), 411–424.

    Article  CAS  Google Scholar 

  • Šturcová, A., Davies, G. R., Eichhorn, S., & J. (2005). Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6(2), 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Tashiro, K., & Kobayashi, M. (1991). Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer, 32(8), 1516–1526.

    Article  CAS  Google Scholar 

  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35–41.

    Article  CAS  Google Scholar 

  • Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., Cheng, C., Chen, L., Wen, C., & Zhang, Q. (2018). Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food and Bioprocess Technology, 11(2), 447–461.

    Article  CAS  Google Scholar 

  • Xia, Z., Singh, A., Kiratitanavit, W., Mosurkal, R., Kumar, J., & Nagarajan, R. (2015). Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochimica Acta, 605, 77–85.n.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from Universidad Nacional de Quilmes (UNQ, Argentina) through R&D program PUNQ 990/19 and from the Agencia Nacional de Promoción Científica y Tecnológica (Argentina) through the PICT-2015-3150.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mercedes A. Peltzer or Andrés G. Salvay.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez Tapias, Y.A., Peltzer, M.A., Delgado, J.F. et al. Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. Food Bioprocess Technol 13, 1166–1180 (2020). https://doi.org/10.1007/s11947-020-02471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02471-4

Keywords

Navigation