Skip to main content
Log in

Parameter Estimation for Evaporation-Driven Tear Film Thinning

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many parameters affect tear film thickness and fluorescent intensity distributions over time; exact values or ranges for some are not well known. We conduct parameter estimation by fitting to fluorescent intensity data recorded from normal subjects’ tear films. The fitting is done with thin film fluid dynamics models that are nonlinear partial differential equation models for the thickness, osmolarity and fluorescein concentration of the tear film for circular (spot) or linear (streak) tear film breakup. The corresponding fluorescent intensity is computed from the tear film thickness and fluorescein concentration. The least squares error between computed and experimental fluorescent intensity determines the parameters. The results vary across subjects and trials. The optimal values for variables that cannot be measured in vivo within tear film breakup often fall within accepted experimental ranges for related tear film dynamics; however, some instances suggest that a wider range of parameter values may be acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ajaev VS, Homsy GM (2001) Steady vapor bubbles in rectangular microchannels. J Colloid Interface Sci 240(1):259–271

    Article  Google Scholar 

  • Awisi-Gyau D, Begley CG, Braun RJ, Luke RA, Tichenor A, King-Smith P (2020) Characterization of spatial and temporal properties of tear breakup patterns (in preparation)

  • Aydemir E, Breward CJW, Witelski TP (2010) The effect of polar lipids on tear film dynamics. Bull Math Biol 73:1171–1201

    Article  MathSciNet  MATH  Google Scholar 

  • Begley CG, Simpson T, Liu H, Salvo E, Wu Z, Bradley A, Situ P (2013) Quantative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Invest Ophthalmol Vis Sci 54:2645–2653

    Article  Google Scholar 

  • Benedetto DA, Clinch TE, Laibson PR (1986) In vivo observations of tear dynamics using fluorophotometry. Arch Ophthalmol 102:410–412

    Article  Google Scholar 

  • Braun RJ (2012) Dynamics of the tear film. Annu Rev Fluid Mech 44:267–297

    Article  MathSciNet  MATH  Google Scholar 

  • Braun RJ, Gewecke NR, Begley CG, King-Smith PE, Siddique JI (2014) A model for tear film thinning with osmolarity and fluorescein. Invest Ophthalmol Vis Sci 55(2):1133–1142

    Article  Google Scholar 

  • Braun RJ, King-Smith PE, Begley CG, Li L, Gewecke NR (2015) Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res 45:132–164

    Article  Google Scholar 

  • Braun RJ, Driscoll TA, Begley CG, King-Smith PE, Siddique JI (2018) On tear film breakup (tbu): dynamics and imaging. Math Med Biol 35(2):145–180

    Article  MATH  Google Scholar 

  • Bron A, Argüeso P, Irkec M, Bright F (2015) Clinical staining of the ocular surface: mechanisms and interpretations. Prog Ret Eye Res 44:36–61

    Article  Google Scholar 

  • Bruna M, Breward CJW (2014) The influence of nonpolar lipids on tear film dynamics. J Fluid Mech 746:565–605

    Article  MathSciNet  MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Thomas A Jr et al (2012) Spectral methods in fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Carlson NB, Kurtz D, Hines C (2004) Clinical procedures for ocular examination, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Casalini T, Salvalaglio M, Perale G, Masi M, Cavallotti C (2011) Diffusion and aggregation of sodium fluorescein in aqueous solutions. J Phys Chem B 115(44):12896–12904

    Article  Google Scholar 

  • Cerretani CF, Radke C (2014) Tear dynamics in healthy and dry eyes. Curr Eye Res 39(6):580–595

    Article  Google Scholar 

  • Cho P, Brown B, Chan I, Conway R, Yap M (1992) Reliability of the tear break-up time technique of assessing tear stability and the locations of the tear break-up in Hong Kong Chinese. Optom Vis Sci 69(11):879–885

    Article  Google Scholar 

  • Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81(3):1131

    Article  Google Scholar 

  • Dartt D (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177

    Article  Google Scholar 

  • Dartt D, Willcox M (2013) Complexity of the tear film: importance in homeostasis and dysfunction during disease. Exp Eye Res 117:1

    Article  Google Scholar 

  • Doane MG (1981) Blinking and the mechanics of the lacrimal drainage system. Ophthalmology 88:844–51

    Article  Google Scholar 

  • Dursch TJ, Li W, Taraz B, Lin MC, Radke CJ (2018) Tear-film evaporation rate from simultaneous ocular-surface temperature and tear-breakup area. Optom Vis Sci 95(1):5–12

    Article  Google Scholar 

  • Gilbard JP, Farris RL, Santamaria J (1978) Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol 96(4):677–681

    Article  Google Scholar 

  • Gipson IK (2004) Distribution of mucins at the ocular surface. Exp Eye Res 78(3):379–388

    Article  Google Scholar 

  • Govindarajan B, Gipson IK (2010) Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res 90(6):655–663

    Article  Google Scholar 

  • Hamano H, Hori M, Mitsunaga S (1981) Measurement of evaporation rate of water from the precorneal tear film and contact lenses. Contacto 25(2):7–15

    Google Scholar 

  • Himebaugh N, Nam J, Bradley A, Liu H, Thibos LN, Begley CG (2012) Scale and spatial distribution of aberrations associated with tear breakup. Optom Vis Sci 89(11):1590–1600

    Article  Google Scholar 

  • Holly FJ (1973) Formation and rupture of the tear film. Exp Eye Res 15(5):515–525

    Article  Google Scholar 

  • Jensen OE, Grotberg JB (1993) The spreading of heat or soluble surfactant along a thin liquid film. Phys Fluids A 75:58–68

    Article  MATH  Google Scholar 

  • Jossic L, Lefevre P, De Loubens C, Magnin A, Corre C (2009) The fluid mechanics of shear-thinning tear substitutes. J Non-Newton Fluid Mech 161(1–3):1–9

    Article  MATH  Google Scholar 

  • Kimball SH, King-Smith PE, Nichols JJ (2010) Evidence for the major contribution of evaporation to tear film thinning between blinks. Invest Ophthalmol Vis Sci 51(12):6294–6297

    Article  Google Scholar 

  • King-Smith PE, Fink B, Hill R, Koelling K, Tiffany J (2004) The thickness of the tear film. Curr Eye Res 29(4–5):357–368

    Article  Google Scholar 

  • King-Smith PE, Nichols JJ, Nichols KK, Fink BA, Braun RJ (2008) Contributions of evaporation and other mechanisms to tear film thinning and break-up. Optom Vis Sci 85(8):623–630

    Article  Google Scholar 

  • King-Smith PE, Fink BA, Nichols JJ, Nichols KK, Braun RJ, McFadden GB (2009) The contribution of lipid layer movement to tear film thinning and breakup. Invest Ophthalmol Vis Sci 50(6):2747–2756

    Article  Google Scholar 

  • King-Smith PE, Hinel EA, Nichols JJ (2010) Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci 51(5):2418–2423

    Article  Google Scholar 

  • King-Smith PE, Nichols JJ, Braun RJ, Nichols KK (2011) High resolution microscopy of the lipid layer of the tear film. Ocul Surf 9(4):197–211

    Article  Google Scholar 

  • King-Smith PE, Ramamoorthy P, Braun RJ, Nichols JJ (2013a) Tear film images and breakup analyzed using fluorescent quenching. Invest Ophthalmol Vis Sci 54:6003–6011

    Article  Google Scholar 

  • King-Smith PE, Reuter KS, Braun RJ, Nichols JJ, Nichols KK (2013b) Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer images. Invest Ophthalmol Vis Sci 54(7):4900–4909

    Article  Google Scholar 

  • King-Smith PE, Kimball SH, Nichols JJ (2014) Tear film interferometry and corneal surface roughness. Invest Ophthalmol Vis Sci 55(4):2614–2618

    Article  Google Scholar 

  • King-Smith PE, Begley CG, Braun RJ (2018) Mechanisms, imaging and structure of tear film breakup. Ocul Surf 16:4–30

    Article  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Lemp MA, Hamill JR (1973) Factors affecting tear film breakup in normal eyes. Arch Ophthalmol 89(2):103–105

    Article  Google Scholar 

  • Lemp MA, Bron AJ, Baudouin C, del Castillo JMB, Geffen D, Tauber J, Foulks GN, Pepose JS, Sullivan BD (2011) Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol 151(5):792–798

    Article  Google Scholar 

  • Lemp MA et al (2007) The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul Surf 5:75–92

    Article  Google Scholar 

  • LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Li L, Braun R, Maki K, Henshaw W, King-Smith PE (2014) Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain. Phys Fluids 26(5):052101

    Article  MATH  Google Scholar 

  • Li L, Braun RJ, Driscoll TA, Henshaw WD, Banks JW, King-Smith PE (2015) Computed tear film and osmolarity dynamics on an eye-shaped domain. Math Med Biol 33(2):123–157

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Begley CG, Chalmers R, Wilson G, Srinivas SP, Wilkinson JA (2006) Temporal progression and spatial repeatability of tear breakup. Optom Vis Sci 83:723–730

    Article  Google Scholar 

  • Liu H, Begley C, Chen M, Bradley A, Bonanno J, McNamara NA, Nelson JD, Simpson T (2009) A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci 50:3671–79

    Article  Google Scholar 

  • Maki KL, Braun RJ, Driscoll TA, King-Smith PE (2008) An overset grid method for the study of reflex tearing. Math Med Biol 25(3):187–214

    Article  MATH  Google Scholar 

  • Mertzanis P, Abetz L, Rajagopalan K, Espindle D, Chalmers R, Snyder C, Caffery B, Edrington T, Simpson T, Nelson JD et al (2005) The relative burden of dry eye in patients’ lives: comparisons to a us normative sample. Invest Ophthalmol Vis Sci 46(1):46–50

    Article  Google Scholar 

  • Miljanović B, Dana R, Sullivan DA, Schaumberg DA (2007) Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol 143(3):409–415

    Article  Google Scholar 

  • Mishima S, Maurice D (1961) The oily layer of the tear film and evaporation. Exp Eye Res 1:39–45

    Article  Google Scholar 

  • Mota M, Carvalho P, Ramalho J, Leite E (1991) Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient. Int Ophthalmol 15(5):321–326

    Article  Google Scholar 

  • Nagyová B, Tiffany J (1999) Components responsible for the surface tension of human tears. Curr Eye Res 19(1):4–11

    Article  Google Scholar 

  • Nelson JD, Craig JP, Akpek EK, Azar DT, Belmonte C, Bron AJ, Clayton JA, Dogru M, Dua HS, Foulks GN et al (2017) TFOS DEWS II introduction. Ocul Surf 15(3):269–275

    Article  Google Scholar 

  • Nichols JJ, Mitchell GL, King-Smith PE (2005) Thinning rate of the precorneal and prelens tear films. Invest Ophthalmol Vis Sci 46(7):2353–2361

    Article  Google Scholar 

  • Nichols JJ, King-Smith PE, Hinel EA, Thangavelu M, Nichols KK (2012) The use of fluorescent quenching in studying the contribution of evaporation to tear thinning. Invest Ophthalmol Vis Sci 53(9):5426–5432

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  • Nong K, Anderson DM (2010) Thin tilm evolution over a thin porous layer: modeling a tear film over a contact lens. SIAM J Appl Math 70:2771–2795

    Article  MathSciNet  MATH  Google Scholar 

  • Norn M (1969) Desiccation of the precorneal film: I. Corneal wetting-time. Acta Ophthalmol 47(4):865–880

    Article  Google Scholar 

  • Norn MS (1970) Micropunctate fluorescein vital staining of the cornea. Acta Ophthalmol 48:108–118

    Article  Google Scholar 

  • Norn MS (1986) Tear film break-up time: a review. In: Holly FJ (ed) The preocular tear film in health, disease and contact lens wear. Dry Eye Institute Inc, Lubbock, pp 52–56

    Google Scholar 

  • Olufsen MS, Ottesen JT (2013) A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol 67(1):39–68

    Article  MathSciNet  MATH  Google Scholar 

  • Owens H, Phillips J (2001) Spreading of the tears after a blink: velocity and stabilization time in healthy eyes. Cornea 20(5):484–487

    Article  Google Scholar 

  • Păun LM, Qureshi MU, Colebank M, Hill NA, Olufsen MS, Haider MA, Husmeier D (2018) MCMC methods for inference in a mathematical model of pulmonary circulation. Stat Neerl 72(3):306–338

    Article  MathSciNet  Google Scholar 

  • Peng CC, Cerretani C, Braun RJ, Radke CJ (2014a) Evaporation-driven instability of the precorneal tear film. Adv Colloid Interface Sci 206:250–264

    Article  Google Scholar 

  • Peng CC, Cerretani C, Li Y, Bowers S, Shahsavarani S, Lin M, Radke C (2014b) Flow evaporimeter to assess evaporative resistance of human tear-film lipid layer. Ind Eng Chem Res 53(47):18130–18139

    Article  Google Scholar 

  • Riquelme R, Lira I, Pérez-López C, Rayas JA, Rodríguez-Vera R (2007) Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty analysis. J Phys D Appl Phys 40(9):2769

    Article  Google Scholar 

  • Sharma A (2003) Many paths to dewetting of thin films: anatomy and physiology of surface instability. Eur Phys J E 12(3):397–408

    Article  Google Scholar 

  • Sharma A, Ruckenstein E (1985) Mechanism of tear film rupture and formation of dry spots on cornea. J Colloid Interface Sci 106:12–27

    Article  Google Scholar 

  • Sharma A, Ruckenstein E (1986) An analytical nonlinear theory of thin film rupture and its application to wetting films. J Colloid Interface Sci 113:8–34

    Article  Google Scholar 

  • Siddique J, Braun R (2015) Tear film dynamics with evaporation, osmolarity and surfactant transport. Appl Math Model 39(1):255–269

    Article  MathSciNet  MATH  Google Scholar 

  • Stapf MR, Braun RJ, King-Smith PE (2017) Duplex tear film evaporation analysis. Bull Math Biol 79(12):2814–2846

    Article  MathSciNet  MATH  Google Scholar 

  • Stone HA (1990) A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys Fluids A 2(1):111–112

    Article  Google Scholar 

  • Sullivan BD, Whitmer D, Nichols KK, Tomlinson A, Foulks GN, Geerling G, Pepose JS, Kosheleff V, Porreco A, Lemp MA (2010) An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci 51(12):6125–6130

    Article  Google Scholar 

  • Tietz NW (1995) Clinical guide to laboratory tests. W. B. Saunders, Waltham

    Google Scholar 

  • Tiffany JM (1991) The viscosity of human tears. Int Ophthalmol 15(6):371–376

    Article  Google Scholar 

  • Tomlinson A, Khanal S, Ramaesh K, Diaper C, McFadyen A (2006) Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci 47(10):4309–4315

    Article  Google Scholar 

  • Tomlinson A, Doane M, McFayden A (2009) Inputs and outputs of the lacrimal system: review of production and evaporative loss. Ocul Surf 7:17–29

    Article  Google Scholar 

  • Trefethen LN (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Varikooty J, Simpson TL (2009) The interblink interval i: the relationship between sensation intensity and tear film disruption. Invest Ophthalmol Vis Sci 50:1087–1092

    Article  Google Scholar 

  • Versura P, Profazio V, Campos E (2010) Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr Eye Res 35(7):553–564

    Article  Google Scholar 

  • Wang J, Fonn D, Simpson TL, Jones L (2003) Precorneal and pre-and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci 44(6):2524–2528

    Article  Google Scholar 

  • Webber WRS, Jones DP (1986) Continuous fluorophotometric method measuring tear turnover rate in humans and analysis of factors affecting accuracy. Med Biol Eng Comput 24:386–392

    Article  Google Scholar 

  • Willcox MDP, Argüeso P, Georgiev GA, Holopainen JM, Laurie GW, Millar TJ, Papas EB, Rolland JP, Schmidt TA, Stahl U, Suarez T, Subbaraman LN, Ucakhan OO, Jones LW (2017) The TFOS DEWS II tear film report. Ocul Surf 15:369–406

    Article  Google Scholar 

  • Winter KN, Anderson DM, Braun RJ (2010) A model for wetting and evaporation of a post-blink precorneal tear film. Math Med Biol 27:211–225

    Article  MathSciNet  MATH  Google Scholar 

  • Wolffsohn JS, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, Gupta PK, Karpecki P, Lazreg S, Pult H, Sullivan BD, Tomlinson A, Tong L, Villani E, Yoon KC, Jones L, Craig J (2017) The TFOS DEWS II diagnostic methodology report. Ocul Surf 15:544–579

    Article  Google Scholar 

  • Wong H, Fatt I, Radke C (1996) Deposition and thinning of the human tear film. J Colloid Interf Sci 184(1):44–51

    Article  Google Scholar 

  • Wong S, Murphy PJ, Jones L (2018) Tear evaporation rates: what does the literature tell us? Cont Lens Anterior Eye 41(3):297–306

    Article  Google Scholar 

  • Wu Z, Begley CG, Port N, Bradley A, Braun R, King-Smith E (2015) The effects of increasing ocular surface stimulation on blinking and tear secretion. Invest Ophthalmol Vis Sci 56(8):4211–4220

    Article  Google Scholar 

  • Yeh PT, Casey R, Glasgow BJ (2013) A novel fluorescent lipid probe for dry eye: Retrieval by tear lipocalin in humans. Invest Ophthalmol Vis Sci 54(2):1398–1410

    Article  Google Scholar 

  • Yokoi N, Georgiev GA (2013) Tear-film-oriented diagnosis and therapy for dry eye. In: Yokoi N (ed) Dry eye syndrome: basic and clinical perspectives. Future Medicine, London, pp 96–108

    Chapter  Google Scholar 

  • Yokoi N, Georgiev GA (2019) Tear-film-oriented diagnosis for dry eye. Jpn J Ophthalmol 63:127–136

    Article  Google Scholar 

  • Zhang L, Matar OK, Craster RV (2003) Analysis of tear film rupture: effect of non-Newtonian rheology. J Colloid Interface Sci 262:130–48

    Article  Google Scholar 

  • Zhang L, Matar OK, Craster RV (2004) Rupture analysis of the corneal mucus layer of the tear film. Mol Simul 30:167–72

    Article  MATH  Google Scholar 

  • Zhong L, Ketelaar CF, Braun RJ, Begley CG, King-Smith PE (2018) Mathematical modelling of glob-driven tear film breakup. Math Med Biol 36(1):55–91

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong L, Braun RJ, Begley CG, King-Smith PE (2019) Dynamics of fluorescent imaging for rapid tear thinning. Bull Math Biol 81(1):39–80

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by National Science Foundation grant DMS 1412085 and National Institutes of Health grant NEI R01EY021794. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayanne A. Luke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Governing Dimensional Equations

For the circular case, we use the dimensional axisymmetric coordinates \((r',z')\) to denote the position and \(\varvec{u}' = (u',w')\) to denote the fluid velocity. The tear film is modeled as an incompressible Newtonian fluid on \(0< r' < R_0\) and \(0< z' < h'(r',t')\), where \(h'(r',t')\) denotes the thickness of the film. Conservation of mass and momentum of the TF fluid and transport of solutes within the fluid are given, respectively, by

$$\begin{aligned}&\nabla ' \cdot \varvec{u}' = 0, \end{aligned}$$
(19)
$$\begin{aligned}&\varvec{u}'_{t'} + (\varvec{u}' \cdot \nabla ') \varvec{u}' = - \frac{1}{\rho } \nabla ' p' + \nu \nabla '^2 \varvec{u}', \end{aligned}$$
(20)
$$\begin{aligned}&\partial _{t'} s' + \nabla ' \cdot ( \varvec{u}' s') = D_s \nabla '^2 s', \end{aligned}$$
(21)

where \(p'\) is the fluid pressure and \(s'\) represents either \(c'\), the osmolarity, or \(f'\), the fluorescein concentration, with diffusivities \(D_o\) and \(D_f\), respectively. The fluid density is \(\rho \) and the kinematic viscosity is \(\nu \).

At the film/cornea interface \(z' = 0\), we require no slip and osmosis across a perfect semipermeable membrane:

$$\begin{aligned} u' = 0, \quad w' = P_o V_w (c'-c_0). \end{aligned}$$
(22)

The membrane permeability is given by \(P_o\), the molar volume of water is \(V_w\), and \(c_0\) is the isotonic osmolarity.

We enforce no flux of solutes across both the film/cornea and film/air interfaces:

$$\begin{aligned} D_o \varvec{n}' \cdot \nabla ' c' - \varvec{n}' \cdot \varvec{u}'c' = 0, \quad D_f \varvec{n}' \cdot \nabla ' f' - \varvec{n}' \cdot \varvec{u}' f' = 0. \end{aligned}$$
(23)

At \(z' = 0'\), the outward normal is given by \(\varvec{n} = (0,-1)\), and at \(z = h'(r',t')\),

$$\begin{aligned} \varvec{n} = \displaystyle \frac{(-\nabla '_{II} h',1)}{(1 + |\nabla '_{II}h'|^2)^{1/2}}, \end{aligned}$$
(24)

where \(\nabla '_{II}\) is the gradient in the plane of the substrate parallel to \(z' = 0\).

The kinematic condition implies that the balance of the material derivative of the TF thickness and the fluid velocity in the \(z'-\) direction is controlled by the evaporative mass flux, \(J'\):

$$\begin{aligned} \rho \left[ \frac{ \partial _{t'} h' + u' \nabla '_{II} h' - w'}{(1 + |\nabla '_{II} h'|^2)^{1/2}} \right] = -J', \end{aligned}$$
(25)

where

$$\begin{aligned} J' = \rho \left[ v_{\min } + (v_{\max } - v_{\min }) e^{-(r'/r_w)^2/2} \right] + \alpha _0 (p'-p_v'). \end{aligned}$$
(26)

Here, \(\alpha _0\) is effectively \(\alpha /K\) from Ajaev and Homsy (2001), \(v_{\min }\) and \(v_{\max }\) are background and peak thinning rates, respectively, \(r_w\) is the standard deviation that corresponds to the width of the evaporation distribution, and \(p_v'\) is atmospheric pressure. The contribution of pressure to evaporation may be ignored with little consequence.

The normal stress condition at \(z' = h'(r',t')\) is given by

$$\begin{aligned} p'-p'_v = - \left( \sigma _0 \nabla '_s \cdot \varvec{n}' + \frac{A^*}{h'^3}\right) , \end{aligned}$$
(27)

where \(\sigma _0\) is the surface tension, \(\nabla '_s = (I - \varvec{n}' \varvec{n}') \cdot \nabla \) (Stone 1990), and \(A^*\) is the Hamaker constant.

1.2 Derivation of Tear Film Equations, Spot Case

Using the scalings (2), (3), we nondimensionalize the governing equations as in Braun et al. (2018). At leading order, conservation of mass and momentum of the fluid on \(0< z < h(r,t)\) are given by

$$\begin{aligned}&\frac{1}{r} \partial _r(ru) + \partial _z w = 0, \end{aligned}$$
(28)
$$\begin{aligned}&\partial _z^2 u = \partial _r p, \quad \partial _z p = 0. \end{aligned}$$
(29)

The leading order boundary conditions at \(z = 0\) are

$$\begin{aligned} u = 0, \quad w = P_c(c-1). \end{aligned}$$
(30)

The leading order boundary conditions at \(z = h(r,t)\) are

$$\begin{aligned}&\partial _t h + u \partial _r h - w = -J, \end{aligned}$$
(31)
$$\begin{aligned}&p = - \frac{1}{r} \partial _r (r \partial _r h) - \frac{A}{h^3}. \end{aligned}$$
(32)

Integrating (28) over the vertical domain, applying the Leibniz rule, and using (31) and (30) to substitute in for the first three resulting terms gives

$$\begin{aligned} \partial _t h + J - P_c(c-1) + \frac{1}{r } \partial _r (r h {\bar{u}}) = 0, \end{aligned}$$
(33)

where

$$\begin{aligned} \displaystyle {\bar{u}}(r,t) = \frac{1}{h} \int _0^h u(r,z,t) dz \end{aligned}$$
(34)

is the depth-averaged fluid velocity. The radial velocity u in the tangentially immobile case is given by

$$\begin{aligned} u(z) = \frac{1}{2}( z^2 - zh) \partial _r p. \end{aligned}$$
(35)

For solutes, we keep all powers of \(\epsilon \) before assuming an expansion in this small parameter. The nondimensional solute transport equations are

$$\begin{aligned} \partial _t s + u \partial _r s + w \partial _z s = \text {Pe}_s^{-1} \left[ \frac{1}{r} \partial _r (r \partial _r s) + \epsilon ^{-2} \partial _z^2 s \right] , \end{aligned}$$
(36)

where s denotes either osmolarity c or fluorescein concentration f, and \(\hbox {Pe}_s = \displaystyle \frac{v_{\max } \ell }{\epsilon D_s}\) is the Péclet number \(\hbox {Pe}_c\) or \(\hbox {Pe}_f\), respectively. We continue the derivation for the osmolarity c following Jensen and Grotberg (1993).

The solute boundary condition at \(z = 0\) is

$$\begin{aligned} \epsilon ^{-2} \text {Pe}_c^{-1} \partial _z c = wc, \end{aligned}$$
(37)

and the boundary condition at \(z = h(r,t)\) is

$$\begin{aligned} \partial _z c = \text {Pe}_c\epsilon ( u \partial _r h - w) c + \epsilon ^2 \partial _r h \partial _r c . \end{aligned}$$
(38)

Assume that c(rzt) can be expanded as:

$$\begin{aligned} c = c_0(r,z,t) + \epsilon ^2 c_1(r,z,t) + O(\epsilon ^4). \end{aligned}$$
(39)

After substituting this expression for c into (36), the leading order equation is given by

$$\begin{aligned} \partial _z^2 c_0 = 0, \end{aligned}$$
(40)

and thus \(c_0 = c_0(r,t)\). The next order in \(\epsilon \) results in

$$\begin{aligned} \partial _z^2 c_1 = \text {Pe}_c (\partial _t c_0 + u \partial _r c_0) - \frac{1}{r} \partial _r (r \partial _r c_0). \end{aligned}$$
(41)

Integrating (41) over the vertical domain gives

$$\begin{aligned} \partial _z c_1(r,h,t) - \partial _z c_1(r,0,t) = \text {Pe}_c (h \partial _t c_0 + h {\bar{u}} \partial _r c_0) - \frac{1}{r} h \partial _r (r \partial _r c_0). \end{aligned}$$
(42)

The terms involving \(c_1\) can be eliminated by identifying the boundary conditions at \(O(\epsilon ^2)\); these result in an equation for \(c_0\). We drop the subscript to give our leading order PDE for osmolarity:

$$\begin{aligned} h(\partial _t c + {\bar{u}} \partial _r c) = \frac{1}{r}\text {Pe}_c^{-1} \partial _r (r \partial _r c) + Jc - P_c(c-1)c. \end{aligned}$$
(43)

The evolution equation for f may be obtained similarly:

$$\begin{aligned} h(\partial _t f + {\bar{u}} \partial _r f) = \frac{1}{r}\text {Pe}_f^{-1} \partial _r (r \partial _r f) + Jf - P_c(c-1)f. \end{aligned}$$
(44)

1.3 Tear Film Equations, Streak Case

The derivation of the problem in the linear case for streaks is similar to the axisymmetric case, and more details may be found in Braun et al. (2015, 2018). The nondimensionalization is the same in both cases.

The problem is solved on \(0< x < X_L\) and \(0< z < h(x,t)\), where h is the TF thickness. Homogeneous Neumann boundary conditions are applied at \(x = 0\) and \(x = X_L\). The fluid velocity coordinates in the (xz) directions are given by (uw). Nondimensionally, the system is given by

$$\begin{aligned}&\partial _t h - J - P_c(c-1) + \partial _x(h {\bar{u}}) = 0, \end{aligned}$$
(45)
$$\begin{aligned}&{\bar{u}} = - \frac{h^2}{12} \partial _x p, \end{aligned}$$
(46)
$$\begin{aligned}&p = - \partial _x^2 h - A h^{-3}, \end{aligned}$$
(47)
$$\begin{aligned}&h(\partial _t c + {\bar{u}} \partial _x c) = \text {Pe}_c^{-1} \partial _x (h \partial _x c) - P_c(c-1) c + Jc, \end{aligned}$$
(48)
$$\begin{aligned}&h(\partial _t f + {\bar{u}} \partial _x f) = \text {Pe}_f^{-1} \partial _x (h \partial _x f) - P_c(c-1) f + Jf. \end{aligned}$$
(49)

Nondimensionally, the evaporation distribution is given by

$$\begin{aligned} J(x,t) = v_b + (1-v_b) e^{-(x/x_w)^2/2} + \alpha p. \end{aligned}$$
(50)

The parameters \(v_b\) and \(\alpha \) are identical to that in the spot case, and r and \(r_w\) have simply been replaced with x and \(x_w\).

1.4 TBU Images

The last image from each trial is shown in Fig. 18 with fitted TBU highlighted. These correspond to the results given in Tables 3 and 4.

Fig. 18
figure 18

The last image in each trial: a S1v2t7, b S1v2t8, c S1v2t10, d S8v2t3, e S27v2t9, f S28v1t3 (contrast of f enhanced 2\(\times \)). The bright rectangle, called the Purkinje, is due to the reflection from the light source (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, R.A., Braun, R.J., Driscoll, T.A. et al. Parameter Estimation for Evaporation-Driven Tear Film Thinning. Bull Math Biol 82, 71 (2020). https://doi.org/10.1007/s11538-020-00745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00745-8

Keywords

Navigation