Skip to main content

Advertisement

Log in

Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV) infection causes high morbidity and mortality among immunocompromised patients and can remain in a latent state in host cells. Expression of the immediate-early (IE) genes sustains HCMV replication and reactivation. As a novel genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been extensively utilized to modify and edit genomic DNA. In the present study, the CRISPR/Cas9 system was used to target the IE region of the HCMV genome via specific single-guide RNAs (sgRNAs). Infection with CRISPR/Cas9/sgRNA lentiviral constructs significantly reduced viral gene expression and virion production in HFF primary fibroblasts and inhibited viral DNA production and reactivation in the THP-1 monocytic cell line. Thus, the CRISPR/Cas9/sgRNA system can accurately and efficiently target HCMV replication and reactivation and represents a novel therapeutic strategy against latent HCMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis 50(11):1439–1447

    Article  PubMed  Google Scholar 

  2. Chee MS, Bankier AT, Beck S et al (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169

    CAS  PubMed  Google Scholar 

  3. Reeves M, Sinclair J (2008) Aspects of human cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:297–313

    CAS  PubMed  Google Scholar 

  4. Deng J, Xiao J, Lv L, Ma P, Song X, Gao B, Gong F, Zhang Y, Xu J (2016) Immunosuppressive therapy alleviates murine cytomegalovirus recurrence by reducing TNF-α post cell transplantation with lethal GVHD. Antiviral Res 133:130–139

    Article  CAS  PubMed  Google Scholar 

  5. Goodrich JM, Bowden RA, Fisher L, Keller C, Schoch G, Meyers JD (1993) Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med 118(3):173–178

    Article  CAS  PubMed  Google Scholar 

  6. Reusser P, Einsele H, Lee J et al (2002) Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood 99(4):1159–1164

    Article  CAS  PubMed  Google Scholar 

  7. Valdez O, Gaspar A, Dickson J, Weigert A, Machado D (2003) Cytomegalovirus infection resistant to ganciclovir in a renal transplant patient. Transplant Proc 35(3):1081–1082

    Article  CAS  PubMed  Google Scholar 

  8. Isada CM, Yen-Lieberman B, Lurain NS et al (2002) Clinical characteristics of 13 solid organ transplant recipients with ganciclovir-resistant cytomegalovirus infection. Transpl Infect Dis 4(4):189–194

    Article  CAS  PubMed  Google Scholar 

  9. Young PG, Rubin J, Angarone M et al (2016) Ganciclovir-resistant cytomegalovirus infection in solid organ transplant recipients: a single-center retrospective cohort study. Transpl Infect Dis 18(3):390–395

    Article  CAS  PubMed  Google Scholar 

  10. Keyes LR, Hargett D, Soland M et al (2012) HCMV protein LUNA is required for viral reactivation from latently infected primary CD14+ cells. PLoS One 7(12):e52827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bego MG, Keyes LR, Maciejewski J, St JSC (2011) Human cytomegalovirus latency-associated protein LUNA is expressed during HCMV infections in vivo. Arch Virol 156(10):1847–1851

    Article  CAS  PubMed  Google Scholar 

  12. Reeves M, Woodhall D, Compton T, Sinclair J (2010) Human cytomegalovirus IE72 protein interacts with the transcriptional repressor hDaxx to regulate LUNA gene expression during lytic infection. J Virol 84(14):7185–7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reeves MB, Sinclair JH (2010) Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol 91(Pt 3):599–604

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair J (2010) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta 1799(3–4):286–295

    Article  CAS  PubMed  Google Scholar 

  15. Noriega V, Redmann V, Gardner T, Tortorella D (2012) Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 54(1–3):140–151

    Article  CAS  PubMed  Google Scholar 

  16. Goodrum F, Caviness K, Zagallo P (2012) Human cytomegalovirus persistence. Cell Microbiol 14(5):644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arcangeletti MC, Vasile SR, Rodighiero I et al (2016) Human cytomegalovirus reactivation from latency: validation of a “switch” model in vitro. Virol J 13(1):179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Eizuru Y (2006) Latency and reactivation of HCMV. Nihon Rinsho 64(Suppl 3):435–439

    PubMed  Google Scholar 

  19. Kondo K, Mocarski ES (1995) Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl 99:63–67

    CAS  PubMed  Google Scholar 

  20. Kondo K, Xu J, Mocarski ES (1996) Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci USA 93(20):11137–11142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pignoloni B, Fionda C, Dell’Oste V et al (2016) Distinct roles for human cytomegalovirus immediate early proteins IE1 and IE2 in the transcriptional regulation of MICA and PVR/CD155 expression. J Immunol 197(10):4066–4078

    Article  CAS  PubMed  Google Scholar 

  22. Kim ET, Kim YE, Kim YJ, Lee MK, Hayward GS, Ahn JH (2014) Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection. PLoS One 9(7):e103308

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schilling EM, Scherer M, Reuter N, Schweininger J, Muller YA, Stamminger T (2017) The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML De Novo SUMOylation. J Virol 91(4):e02049-16

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hou W, Cruz-Cosme R, Wen F et al (2018) Expression of human cytomegalovirus IE1 leads to accumulation of mono-SUMOylated PML that is protected from degradation by herpes simplex virus 1 ICP0. J Virol 92(23):e01452-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  PubMed  Google Scholar 

  27. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  CAS  PubMed  Google Scholar 

  28. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng J, Xiao J, Ma P, Gao B, Gong F, Lv L, Zhang Y, Xu J (2017) Manipulation of viral microRNAs as a potential antiviral strategy for the treatment of cytomegalovirus infection. Viruses 9(5):118

    Article  PubMed Central  CAS  Google Scholar 

  30. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

  31. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao J, Deng J, Lv L, Kang Q, Ma P, Yan F, Song X, Gao B, Zhang Y, Xu J (2015) Hydrogen peroxide induce human cytomegalovirus replication through the activation of p38-MAPK signaling pathway. Viruses 7:2816–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meshesha MK, Bentwich Z, Solomon SA, Avni YS (2016) In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene. 575(1):101–107

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Lai MM, Lou YY, Guo BH, Wang HY, Zheng XQ (2016) Transcriptome altered by latent human cytomegalovirus infection on THP-1 cells using RNA-seq. Gene. 594(1):144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arend KC, Ziehr B, Vincent HA, Moorman NJ (2016) multiple transcripts encode full-length human cytomegalovirus IE1 and IE2 proteins during lytic infection. J Virol 90(19):8855–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castillo JP, Kowalik TF (2002) Human cytomegalovirus immediate early proteins and cell growth control. Gene. 290(1–2):19–34

    Article  CAS  PubMed  Google Scholar 

  37. Stinski MF, Petrik DT (2008) Functional roles of the human cytomegalovirus essential IE86 protein. Curr Top Microbiol Immunol 325:133–152

    CAS  PubMed  Google Scholar 

  38. Advances in CMV management (1998) Fomivirsen (Vitravene) approved. Proj Inf Perspect 26:7

    Google Scholar 

  39. Lurain NS, Chou S (2010) Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev 23(4):689–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campos AB, Ribeiro J, Boutolleau D, Sousa H (2016) Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 26(3):161–182

    Article  PubMed  Google Scholar 

  41. Gergen J, Coulon F, Creneguy A et al (2018) Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One 13(2):e0192602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. van Diemen FR, Kruse EM, Hooykaas MJ et al (2016) CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog 12(6):e1005701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ioudinkova E, Arcangeletti MC, Rynditch A et al (2006) Control of human cytomegalovirus gene expression by differential histone modifications during lytic and latent infection of a monocytic cell line. Gene 384:120–128

    Article  CAS  PubMed  Google Scholar 

  44. Reeves MB (2011) Chromatin-mediated regulation of cytomegalovirus gene expression. Virus Res 157(2):134–143

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant no. 81902055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiying Li or Yanyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Deng, J., Zhang, Q. et al. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch Virol 165, 1827–1835 (2020). https://doi.org/10.1007/s00705-020-04687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04687-3

Navigation