Skip to main content
Log in

The analysis of stress distribution in tempered structural glass with stress concentrators under tension and compression

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The paper describes the results obtained from the tensile and compression experimental tests of the structural tempered glass plates with three different types of stress concentrators and without them. The types of stress concentrator have been chosen as close as possible to those usually found in practical situations and also taking into account the cases known from the literature. All tests are performed under the same conditions and with the step of loading 1.0 kN for tension and compression tests up to the limit of 8.0 kN. The stress gradients are measured with an optical device by birefringence. The research is aimed at determining the distribution and the values of stress gradients under tension and compression. The paper considers the problems of determining the stress values and their distribution in the glass plates with various stress concentrators, based on the results of non-destructive measuring, analytical calculations and the numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Eliasova V. Bolted connections of glass structures by means of two holes in-line. In: Proceedings of the conference on architectural and structural applications of glass (challenging glass). Delft, The Netherlands. 2008. p. 279–284.

  2. EN 15682-1. Glass in building-Heat soaked thermally toughened alkaline earth silicate safety glass - Part 1: definition and description. 2013.

  3. Feldmann M, Kasper R. Guidance for European structural design of glass components (Issue February 2016).2014. https://doi.org/10.2788/5523.

  4. Hagl A. Bonded point-supports: understanding today—optimizing for the future. In: Proceedings of the conference on architectural and structural applications of glass (challenging glass 2). Delft, the Netherlands. 2010. p.259–268.

  5. ISO 11455:1995 Raw optical glass–determination of birefringence.

  6. Katsivalis I, Thomsen OT, Feih S, Achintha M. Strength evaluation and failure prediction of bolted and adhesive glass/steel joints. Glass Struct Eng. 2018;3(2):183–96. https://doi.org/10.1007/s40940-018-0070-0.

    Article  Google Scholar 

  7. Katte H. Bildgebende Messung der Spannungsdoppelbrechung in optischen Materialien und Komponenten. Photonik, Band, Heft 5, S. 2008. p. 60–63.

  8. Kooymans J. Long span glass fin design. In: Proceedings of the conference on architectural and structural applications of glass (challenging glass). Delft, the Netherlands. 2008. p.89–99.

  9. Matusita K, Yokota R, Kimijima T, Komatsu T, Ihara C. Compositional trends in photoelastic constants of borate glasses. J Am Ceram Soc. 1984;67:261–5.

    Article  Google Scholar 

  10. McDonnell TR, Thompson D. Structural glass observation boxes (Willis Tower ledge). In: Proceedings of the conference on architectural and structural applications of glass (challenging glass 2). Delft, The Netherlands. 2010. p. 129–137.

  11. Nielsen JH, Olesen JF, Stang H.Experimental investigation of residual stresses in toughened glass. In: Proceedings of the conference on architectural and structural applications of glass (challenging glass). Delft, The Netherlands. 2008. p. 387–398.

  12. Nielsen, Jens Henrik. Tempered glass: -bolted connections and related problems. In: Civil Engineering. 2009.

  13. Nielsen JH, Olesen JF, Poulsen PN, Stang H. Simulation of residual stresses at holes in tempered glass: a parametric study. Mater Struct Materiaux et Constr. 2010;43(7):947–61. https://doi.org/10.1617/s11527-009-9558-z.

    Article  Google Scholar 

  14. Pilkey WD. Peterson’s stress concentration factors. Hoboken: Wiley; 1997. p. 524.

    Book  Google Scholar 

  15. Pockels F. Über die Änderung des optischen Verhaltens verschiedener Gläser durch elastische deformation. Ann Phys. 1902;312:745–71.

    Article  Google Scholar 

  16. Pourmoghaddam N, Schneider J. Finite-element analysis of the residual stresses in tempered glass plates with holes or cut-outs. Glass Struct Eng. 2018;3(1):17–37. https://doi.org/10.1007/s40940-018-0055-z.

    Article  Google Scholar 

  17. Reyer E, Walochnik W. 1975. Optische Messverfahren - Anwendung auf tragende Baukonstruktionen. Universitätsbibliothek der technischen Universität Berlin. 104 p.

  18. Šapalas A, Šaučiuvėnas G, Rasiulis K, Griškevičius M, Gečys T. Behaviour of vertical cylindrical tank with local wall imperfections. J Civil Eng Manag. 2019;25(3):287–96. https://doi.org/10.3846/jcem.2019.9629.

    Article  Google Scholar 

  19. Schwiecker, W. 1957. Komponentenabhängigkeit der spannungsoptischen Koeffizienten von Glas. Glastechn Berlin. p 84–88.

  20. Serafinavičius T, Kvedaras AK. Challenges to structural glass: what have been already done. Eng Struct Technol. 2011;3(2):79–89.

    Google Scholar 

  21. Serafinavičius T, Hildebrand J. Šaučiuvėnas, G. Stress distribution of tension structural glass plates. In Proc. Challenging Glass 3: Conference on Architectural and Structural Applications of Glass, 28-29 June 2012, Delft, The Netherlands. p. 565–578.

  22. Serafinavičius T, Kvedaras AK. Review of study on structural glass and structures. In: Proceedings 10th international conference modern building materials, structures and techniques: selected papers, Vol. 2. May 19–21, 2010. Vilnius: Technika. 2010. P. 787–792.

  23. Sonck D, Belis J. Elastic lateral-torsional buckling of glass beams with continuous lateral restraints. Glass Struct Eng. 2016;1(1):173–94. https://doi.org/10.1007/s40940-016-0023-4.

    Article  Google Scholar 

  24. StrainMatic. Reference of the operating software. Erlangen: Ilis gmbh; 2007. p. 45.

    Google Scholar 

  25. Wang Z, Wang Y, Liang Y, Du X, Shi Y. Bearing capacity of tempered glass panel in point supported glass facades against in-plane load. Arch Civil Mech Eng. 2016;16(4):935–48. https://doi.org/10.1016/j.acme.2016.07.005.

    Article  Google Scholar 

  26. Watson J, Nielsen J, Overend M. A critical flaw size approach for predicting the strength of bolted glass connections. Eng Struct. 2013;57:87–99. https://doi.org/10.1016/j.engstruct.2013.07.026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonas Ustinovichius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šaučiuvėnas, G., Gečys, T., Mudrov, A. et al. The analysis of stress distribution in tempered structural glass with stress concentrators under tension and compression. Archiv.Civ.Mech.Eng 20, 68 (2020). https://doi.org/10.1007/s43452-020-00067-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00067-5

Keywords

Navigation