Skip to main content
Log in

Zero Measure and Singular Continuous Spectra for Quantum Graphs

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We introduce a dynamically defined class of unbounded, connected, equilateral metric graphs on which the Kirchhoff Laplacian has zero Lebesgue measure spectrum and a non-trivial singular continuous part. A local Borg–Marchenko uniqueness result is obtained in order to utilize Kotani theory for aperiodic subshifts satisfying Boshernitzan’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Non-compact, connected, and containing cycles.

  2. The diamond tiles can be viewed as circles of circumference 4. Similar graphs were recently considered in [4, 25].

  3. The scope of generality is comprehensively discussed in [21].

  4. In fact, “\(\subset \)” can be replaced by “\(=\)” by standard arguments utilizing ergodicity/minimality of \((\Omega ,T)\), cf., e.g., [14, 16].

  5. ± means that \(\tau \) is viewed as a differential expression on \((0,+\infty )\) and \((-\infty , 0)\) correspondingly.

  6. At this point \((\Omega , T)\) is not assumed to be a minimal subshift satisfying (B).

  7. Our operator is of the form described in [9, Section 3.2]; hence, the referenced result is applicable.

  8. i.e., \(e^{-cx}f(x)\in L^2({\mathbb {R}}_+, dx)\) for all \(c>0\)

References

  1. Aizenman, M., Warzel, S.: Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder. EPL (Europhys. Lett.) 96, 37004 (2011)

    Article  ADS  Google Scholar 

  2. Aizenman, M., Warzel, S.: Resonant delocalization for random Schrödinger operators on tree graphs. J. Eur. Math. Soc. (JEMS) 15, 1167–1222 (2013)

    Article  MathSciNet  Google Scholar 

  3. Albeverio, S., Hryniv, R., Mykytyuk, Ya.: Inverse spectral problems for Sturm–Liouville operators in impedance form. J. Funct. Anal. 222, 143–177 (2005)

    Article  MathSciNet  Google Scholar 

  4. Baradaran, M., Exner, P., Tater, M.: Ring chains with vertex coupling of a preferred orientation. Rev. Math. Phys. https://doi.org/10.1142/S0129055X20600053(to appear)

  5. Bennewitz, C.: A proof of the local Borg–Marchenko theorem. Commun. Math. Phys. 218, 131–132 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  7. Borg, G.: Uniqueness theorems in the spectral theory of \(-y^{\prime \prime }+(\lambda -q(x))y=0\). In: Proceedings of 11th Scandinavian Congress of Mathematicians, pp. 276–287. Johan Grundt Tanums Forlag, Oslo (1952)

  8. Boutet de Monvel, A., Lenz, D., Stollmann, P.: Sch’nol’s theorem for strongly local forms. Isr. J. Math. 173, 189–211 (2009)

    Article  MathSciNet  Google Scholar 

  9. Boutet de Monvel, A., Stollmann, P.: Eigenfunction expansions for generators of Dirichlet forms. J. Reine Angew. Math. 561, 131–144 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Breuer, J.: Singular continuous spectrum for the Laplacian on certain sparse trees. Commun. Math. Phys. 219, 851–857 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Breuer, J., Frank, R.: Singular spectrum for radial trees. Rev. Math. Phys. 21, 929–945 (2009)

    Article  MathSciNet  Google Scholar 

  12. Breuer, J., Keller, M.: Spectral analysis of certain spherically homogeneous graphs. Oper. Matrices 7, 825–847 (2013)

    Article  MathSciNet  Google Scholar 

  13. Breuer, J., Levi, N.: On the decomposition of the Laplacian on metric graphs. Ann. Henri Poincaré 21, 499–537 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    Book  Google Scholar 

  15. Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergodic Theory Dyn. Syst. 37, 1681–1764 (2017)

    Article  Google Scholar 

  16. Damanik, D., Fillman, J.: Spectral Theory of Discrete One-Dimensional Ergodic Schrödinger Operators (monograph in preparation)

  17. Damanik, D., Fillman, J., Gorodetski, A.: Continuum Schrödinger operators associated with aperiodic subshifts. Ann. Henri Poincare 15, 1123–1144 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Damanik, D., Fillman, J., Lukic, M., Yessen, W.: Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin. Dyn. Syst. Ser. S 9(4), 1009–1023 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Damanik, D., Fillman, J., Sukhtaiev, S.: Localization for Anderson models on metric and discrete tree graphs. Math. Ann. 376, 1337–1393 (2020)

    Article  MathSciNet  Google Scholar 

  20. Damanik, D., Lenz, D.: A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133, 95–123 (2006)

    Article  MathSciNet  Google Scholar 

  21. Damanik, D., Lenz, D.: Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. 85, 671–686 (2006)

    Article  MathSciNet  Google Scholar 

  22. Damanik, D., Sukhtaiev, S.: Anderson localization for radial tree graphs with random branching numbers. J. Funct. Anal. 277, 418–433 (2019)

    Article  MathSciNet  Google Scholar 

  23. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Inverse spectral theory for Sturm–Liouville operators with distributional potentials. J. Lond. Math. Soc. 88, 801–828 (2013)

    Article  MathSciNet  Google Scholar 

  24. Eckhardt, J., Kostenko, A., Nichols, G., Teschl, G.: Spectral asymptotics for canonical systems. J. Reine Angew. Math. 736, 285–315 (2018)

    Article  MathSciNet  Google Scholar 

  25. Exner, P., Manko, S.: Spectral properties of magnetic chain graphs. Ann. Henri Poincaré 18, 929–953 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Exner, P., Seifert, C., Stollmann, P.: Absence of absolutely continuous spectrum for the Kirchhoff Laplacian on radial trees. Ann. Henri Poincaré 15, 1109–1121 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gel’fand, I.M., Levitan, B.M.: On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSR. Ser. Mat. 15, 309–360 (1951). (Russian); English transl. in Amer. Math. Soc. Transl. Ser. 2 1, 253–304 (1955)

  28. Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Grigorchuk, R., Lenz, D., Nagnibeda, T.: Spectra of Schreier graphs of Grigorchuk’s group and Schroedinger operators with aperiodic order. Math. Ann. 370, 1607–1637 (2018)

    Article  MathSciNet  Google Scholar 

  30. Hanson, G.W., Yakovlev, A.B.: Operator Theory for Electromagnetics: An Introduction. Springer, Berlin (2002)

    Book  Google Scholar 

  31. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  32. Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133, 163–184 (1998)

    Article  MathSciNet  Google Scholar 

  33. Kostenko, A., Nicolussi, N.: Quantum graphs on radially symmetric antitrees. J. Spect. Theory. arXiv:1901.05404(to appear)

  34. Kotani, S.: Support theorems for random Schrödinger operators. Commun. Math. Phys. 97, 443–452 (1985)

    Article  ADS  Google Scholar 

  35. Kotani, S.: One-dimensional random Schrödinger operators and Herglotz functions. In: Itô, K., Ikeda, N. (eds.) Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985), pp. 219–250. Academic Press, Boston (1987)

  36. Lenz, D., Seifert, C., Stollmann, P.: Zero measure Cantor spectra for continuum one-dimensional quasicrystals. J. Differ. Equ. 256, 1905–1926 (2014)

    Article  MathSciNet  Google Scholar 

  37. Marchenko, V.A.: Some questions in the theory of one-dimensional linear differential operators of the second order, I. Trudy Moskv. Mat. Obsch. 1, 327–420 (1952). (in Russian); English transl. in Am. Math. Soc. Transl. (2) 101, 1–104 (1973)

  38. Pankrashkin, K.: Spectra of Schrödinger operators on equilateral quantum graphs. Lett. Math. Phys. 77, 139–154 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Pankrashkin, K.: Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures. J. Math. Ann. Appl. 396, 139–154 (2006)

    Google Scholar 

  40. Remling, C.: Spectral Theory of Canonical Systems. De Gruyter Studies in Mathematics, 70. Walter de Gruyter & Co, Berlin (2018)

    Book  Google Scholar 

  41. Simon, B.: Operators with singular continuous spectrum, VI. Graph Laplacians and Laplace–Beltrami operators. Proc. Am. Math. Soc. 4, 1177–1182 (1996)

    Article  MathSciNet  Google Scholar 

  42. Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

    Article  MathSciNet  Google Scholar 

  43. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory, vol. 54. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  44. Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987)

    Article  ADS  Google Scholar 

  45. Teschl, G.: Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, 2nd edn. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Sukhtaiev.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Damanik was supported in part by NSF Grant DMS–1700131. L. Fang was supported by NSFC (No. 11571327) and the Joint Ph.D. Scholarship Program of Ocean University of China. S. Sukhtaiev was supported in part by an AMS-Simons travel Grant, 2017–2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damanik, D., Fang, L. & Sukhtaiev, S. Zero Measure and Singular Continuous Spectra for Quantum Graphs. Ann. Henri Poincaré 21, 2167–2191 (2020). https://doi.org/10.1007/s00023-020-00920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00920-6

Navigation