Skip to main content
Log in

A rate-dependent model for sand to predict constitutive response and instability onset

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A constitutive model has been proposed for predicting rate-dependent stress–strain response of sand and further implemented in finite element code to explore the influence of strain rate on the localization behavior of sand. The proposed model simulates various constitutive features of sand subjected to higher strain rates, e.g., enhanced shear strength, early peak followed by a softening response, reduced compression for loose sand, etc., which have been reported in the literature. Numerical simulations predict a delayed onset of strain localization and increase in the band angle with increasing strain rate. Strains are noticed to localize in the hardening regime for loose sand, whereas for denser state localization emerges in the post-peak regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abrantes AE, Yamamuro JA (2002) Experimental and data analysis techniques used for high strain rate tests on cohesion less soil. Geotech Test J 25(2):128–141

    Google Scholar 

  2. Andrade JE, Borja RI (2006) Capturing strain localization in dense sands with random density. Int J Numer Methods Eng 67:1531–1564

    MATH  Google Scholar 

  3. Andrade JE, Borja RI (2006) Modeling deformation banding in dense and loose fluid-saturated sands. Finite Elem Anal Des 43:361–383

    MathSciNet  Google Scholar 

  4. Andrade JE, Chen Q, Le PH, Avila CF, Evans TM (2012) On the rheology of dilative granular media: bridging solid- and fluid-like behaviour. J Mech Phys Solids 60:1122–1136

    MathSciNet  Google Scholar 

  5. Bang DPV, Di Benedetto H, Duttine A, Ezaoui A (2007) Viscous behaviour of dry sand. Int J Numer Anal Methods Geomech 31:1631–1658

    Google Scholar 

  6. Bigoni D (2012) Nonlinear solid mechanics bifurcation theory and material instability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Borja RI, Andrade JE (2006) Critical state plasticity. Part VI: Meso-scale finite element simulation of strain localization in discrete granular materials. Comput Methods Appl Mech Eng 195:5115–5140

    MATH  Google Scholar 

  8. Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61(1):219–234

    Google Scholar 

  9. Borja RI, Song X, Wu W (2013) Critical state plasticity. Part VII: Triggering a shear band in variably saturated porous media. Comput Methods Appl Mech Eng 261–262:66–82

    MATH  Google Scholar 

  10. Borja RI, Yin Q, Zhao Y (2020) Cam-clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Methods Appl Mech Eng 360:112695

    MathSciNet  MATH  Google Scholar 

  11. Boukpeti N, Mroz Z, Drescher A (2004) Modeling rate effects in undrained loading of sands. Can Geotech J 41(2):342–350

    Google Scholar 

  12. Carosio A, Willam K, Etse G (2000) On the consistency of viscoplastic formulations. Int J Solids Struct 37:7349–7369

    MATH  Google Scholar 

  13. Casagrande A, Shannon WL (1949) Strength of soils under dynamic loads. Trans ASCE 114:755–772

    Google Scholar 

  14. de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York

    Google Scholar 

  15. Desai CS, Zhang D (1987) Viscoplastic models for geologic materials with generalized flow rule. Int J Numer Anal Methods Geomech 11:603–620

    MATH  Google Scholar 

  16. Di Benedetto H, Tatsuoka F, Ishihara M (2002) Time dependent shear deformation characteristics of sand and their constitutive modelling. Soils Found 42(2):1–22

    Google Scholar 

  17. Di Prisco C, Imposimato S (1996) Time dependent mechanical behavior of loose sands. Mech Cohes Frict Mater 1:45–73

    Google Scholar 

  18. Etse G, Willam K (1999) Failure analysis of elastoviscoplastic material models. J Eng Mech 125(1):60–69

    Google Scholar 

  19. Gajo A, Wood DM (1999) A kinematic hardening constitutive model for sands: the multiaxial formulation. Int J Numer Anal Methods Geomech 23:925–965

    MATH  Google Scholar 

  20. Garagash DI (2005) Diffused vs. localized instability in compacting geomaterials under undrained conditions. In: Geomechanics, testing, modelling and simulation, proceedings of the first Japan-U.S. Workshop on testing, modelling and simulation, Boston, Massachusetts, June 27–29, 2003. ASCE Geotechnical Special Publication No. 143, pp 444–462

  21. Han C, Vardoulakis IG (1991) Plane-strain compression experiments on water-saturated fine-grained sand. Geotechnique 41(1):49–78

    Google Scholar 

  22. Heeres OM, Suiker ASJ, de Borst R (2002) A comparison between the Perzyna viscoplastic model and the consistency viscoplastic model. Eur J Mech A Solids 21:1–12

    MATH  Google Scholar 

  23. Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37:2590–2610

    Google Scholar 

  24. Hinchberger SD, Qu G (2009) Viscoplastic constitutive approach for rate-sensitive structured clays. Can Geotech J 45(6):609–629

    Google Scholar 

  25. Jackson JG, Ehrgott JQ, Rohani B (1980) Loading rate effects on compressibility of sand. J Geotech Eng Div 106(GT8):839–852

    Google Scholar 

  26. Karimpour H, Lade PV (2010) Time effects relate to crushing in sand. J Geotech Geoenviron Eng ASCE 136(9):1209–1219

    Google Scholar 

  27. Katona M (1984) Evaluation of viscoplastic cap model. J Geotech Eng 110(8):1106–1125

    Google Scholar 

  28. Kiyota T, Tatsuoka F (2006) Viscous property of loose sand in triaxial compression, extension and cyclic loading. Soils Found 46(5):665–684

    Google Scholar 

  29. Kongkitkul W, Tatsuoka F, Duttine A, Kawabe S, Enomoto T, Di Benedetto H (2008) Modelling and simulation of rate-dependent stress-strain behavior of granular materials in shear. Soils Found 48(2):175–194

    Google Scholar 

  30. Lade PV, Liggio CD, Jungman N (2009) Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J Geotech Geoenviron Eng 135(7):941–953

    Google Scholar 

  31. Lade PV, Karimpour H (2010) Static fatigue controls particle crushing and time effects in granular materials. Soils Found 50(5):573–583

    Google Scholar 

  32. Lee KL, Seed HB, Dunlop P (1969) Effect of transient loading on the strength of sand. In: Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico, 1969. vol 1, pp 239–247

  33. Mukherjee M, Gupta A, Prashant A (2016) Drained instability analysis of sand under biaxial loading using a 3D material model. Comput Geotech 79:130–145

    Google Scholar 

  34. Mukherjee M, Gupta A, Prashant A (2017) Instability analysis of sand under undrained biaxial loading with rigid and flexible boundary. Int J Geomech. https://doi.org/10.1061/(asce)gm.1943-5622.0000690

    Article  Google Scholar 

  35. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67:69–85

    MATH  Google Scholar 

  36. Neilsen MK, Schreyer HL (1993) Bifurcations in elastic-plastic materials. Int J Solids Struct 30:521–544

    MATH  Google Scholar 

  37. Oka F, Kimoto S, Higo Y, Ohta H, Sanagawa T, Kodaka T (2011) An elasto-viscoplastic model for diatomaceous mudstone and numerical simulation of compaction bands. Int J Numer Anal Methods Geomech 35(2):244–263

    MATH  Google Scholar 

  38. Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213

    Google Scholar 

  39. Peng F-L, Siddiquee MSA, Tatsuoka F, Yasin SJM, Tanaka T (2009) Strain energy-based elasto-viscoplastic constitutive modelling of sand for numerical simulation. Soils Found 49(4):611–630

    Google Scholar 

  40. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quart Appl Math 20:321–332

    MathSciNet  MATH  Google Scholar 

  41. Perzyna P (1966) Problems in viscoplasticity. Adv Appl Mech 9:244–368

    Google Scholar 

  42. Pierce D, Shih CF, Needleman A (1984) Tangent modulus method for rate dependent solids. Comput Struct 18(5):875–887

    MATH  Google Scholar 

  43. Prashant A, Penumadu D (2005) Effect of overconsolidation and anisotropy of Kaolin Clay using true triaxial testing. Soils Found 45(3):71–82

    Google Scholar 

  44. Regueiro RA, Foster CD (2011) Bifurcation analysis for a rate-sensitive, non-associative, three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials: part I. Small strain. Int J Numer Anal Methods Geomech 35:201–225

    MATH  Google Scholar 

  45. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatants materials. J Mech Phys Solids 23:371–394

    Google Scholar 

  46. Suescun-Florez E, Iskander M (2017) Effect of fast constant loading rates on the global behavior of sand in triaxial compression. Geotech Test J 40(1):52–71

    Google Scholar 

  47. Suescun-Florez E, Omidvar M, Iskander M, Bless S (2015) Review of high strain rate testing of granular soils. Geotech Test J 38(4):1–26

    Google Scholar 

  48. Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  49. Szabó L (2000) Comments on loss of strong ellipticity in elastoplasticity. Int J Solids Struct 37:3775–3806

    MathSciNet  MATH  Google Scholar 

  50. Tatsuoka F, Ishihara M, Di Benedetto H, Kuwano R (2002) Time dependent shear deformation characteristics of geomaterials and their simulation. Soils Found 42(2):103–129

    Google Scholar 

  51. Tong X, Tuan C (2007) Viscoplastic cap model for soils under high strain rate loading. J Geotech Geoenviron Eng 133(2):206–214

    Google Scholar 

  52. Wang WM, Sluys LJ, De Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40:3839–3864

    MATH  Google Scholar 

  53. Watanabe K, Kusakabe O (2013) Reappraisal of loading rate effects on sand behavior in view of seismic design for pile foundation. Soils Found 53(2):215–231

    Google Scholar 

  54. Whitman RV, Healy K (1962) The shearing resistance of sands during rapid loading. Trans ASCE 128(1):1553–1594

    Google Scholar 

  55. Whitman RV (1957) The behavior of soils under transient loading. In: Proceedings of the 4th international conference on soil mechanics, London, 1957. vol 1, pp 207–210

  56. Wood DM (2004) Geotechnical modelling. Taylor and Francis group, CRC Press, Boca Raton

    Google Scholar 

  57. Wood DM, Belkheir K, Liu DF (1994) Strain softening and state parameter for sand modelling. Geotechnique 44(2):335–339

    Google Scholar 

  58. Yamamuro JA, Lade PV (1993) Effects of strain rate on instability of granular soils. Geotech Test J ASTM 16(3):304–313

    Google Scholar 

  59. Yamamuro JA, Abrantes AE, Lade PV (2011) Effect of strain rate on the stress-strain behavior of sand. J Geotech Geoenviron Eng ASCE 137(12):1169–1178

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the insightful discussions with Dr. Arghya Das from Indian Institute of Technology Kanpur regarding the numerical implementation of the proposed model in ABAQUS. The authors wish to thank SERB (Grant No. ECR/2018/002141) for the financial support toward carrying out part of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Prashant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In case of plastic or viscoplastic material response, the nonlinear stress–strain relations are generally evaluated incrementally. Following the approach given in Wang et al. [52], this section presents a one-step Euler stress-update algorithm for the proposed Perzyna-type viscoplastic model. In case of small deformation formulation, the incremental strain \(\Delta \varepsilon\) can be decomposed into an elastic part \(\Delta \varepsilon^{e}\) and a viscoplastic part \(\Delta \varepsilon^{vp}\) according to

$$\Delta \varepsilon = \Delta \varepsilon^{e} + \Delta \varepsilon^{vp}.$$
(8)

In case of proposed model, flow rule is defined by

$$\dot{\varepsilon }^{vp} = \dot{\mathcal{\varepsilon }}_{\text{ref}} \mathcal{\phi }\bar{n},{\text{ where}}\,\bar{n} = {{\partial g_{d} } \mathord{\left/ {\vphantom {{\partial g_{d} } {\partial \sigma^{'} }}} \right. \kern-0pt} {\partial \sigma^{'} }}\,{\text{and}}\,\phi = \left( {{{\eta_{yd} } \mathord{\left/ {\vphantom {{\eta_{yd} } {\eta_{ys} }}} \right. \kern-0pt} {\eta_{ys} }}} \right)^{n}.$$
(9)

The incremental stress is related to the elastic response by

$$\Delta \sigma^{'} = E(\Delta \varepsilon - \Delta \varepsilon^{vp} )\,\,,$$
(10)

where \(E\) represents the elastic stiffness tensor. A generalized trapezoidal rule can be applied to estimate the incremental viscoplastic strain and change in the internal state variable

$$\begin{aligned} \Delta \varepsilon^{vp} & = \left[ {(1 - \bar{\mathcal{\theta }})\dot{\varepsilon }_{t}^{vp} + \bar{\mathcal{\theta }}\dot{\varepsilon }_{t + \Delta t}^{vp} } \right]\Delta t\,\,, \\ \Delta \bar{\mathcal{\kappa }} & = \left[ {(1 - \bar{\mathcal{\theta }})\mathcal{\dot{\bar{\kappa }}}_{\mathcal{t}} + \mathcal{\bar{\theta }\dot{\bar{\kappa }}}_{t + \Delta t} } \right]\Delta t\,\,, \\ \end{aligned}$$
(11)

where \(\bar{\kappa }\) denotes the internal variable of the viscoplastic model, and for the proposed model, two internal variables are considered, i.e., \(\Delta \bar{\mathcal{\kappa }}_{{1}} = \varepsilon_{q}^{vp}\) and \(\Delta \bar{\mathcal{\kappa }}_{{2}} = \varepsilon_{p}^{vp}\). The interpolation parameter, \(\bar{\theta }\), is such that \(0 \le \bar{\theta } \le 1\), where \(\bar{\theta } = 0\) implies a complete explicit method and \(\bar{\theta } = 1\) stands for the fully implicit method. In the one-step Euler integration scheme, the viscoplastic strain rate at the end of the time interval \(\Delta t\,\) is expressed in a limited Taylor series expansion as

$$\begin{aligned} \dot{\varepsilon }_{t + \Delta t}^{vp} & \varvec{ = }\dot{\varepsilon }_{t}^{vp} + \left[ {\frac{{\partial \dot{\varepsilon }^{vp} }}{{\partial \sigma^{'} }}} \right]_{t} \Delta \sigma^{'} + \left[ {\frac{{\partial \dot{\varepsilon }^{vp} }}{{\partial \bar{\mathcal{\kappa }}}}} \right]_{t} \Delta \bar{\mathcal{\kappa }} \\ & \varvec{ = }\dot{\varepsilon }_{t}^{vp} + \hat{G}_{t} \Delta \sigma^{'} + h_{t} \Delta \bar{\mathcal{\kappa }}\,\,, \\ \end{aligned}$$
(12)
$${\text{where}}\,\hat{G}_{t} = \dot{\mathcal{\varepsilon }}_{\text{ref}} \left[ {\frac{{\partial \mathcal{\phi }}}{{\partial \sigma^{'} }}\bar{n}^{{T}} + \mathcal{\phi }\frac{{\partial \bar{n}}}{{\partial \sigma^{'} }}} \right]_{{t}}, \quad {}h_{t} = \dot{\mathcal{\varepsilon }}_{\text{ref}} \left[ {\frac{{\partial \mathcal{\phi }}}{{\partial \bar{\mathcal{\kappa }}}}\bar{n}} \right]_{{t}}.$$
(13)

Substitution of Eq. 12 into Eq. 11 yields

$$\Delta \varepsilon^{vp} \varvec{ = }\left( {\dot{\varepsilon }_{t}^{vp} + \bar{\mathcal{\theta }}\hat{G}_{{t}} \Delta \sigma^{'} + \bar{\mathcal{\theta }}h_{{t}} \Delta \bar{\mathcal{\kappa }}} \right)\Delta {t}\,.$$
(14)

Further substitution of Eq. 14 into the incremental stress–strain relation of Eq. 10 leads to the following relation:

$$\Delta \sigma^{'} = D_{c} \Delta \varepsilon - \Delta \bar{q}\,\,,$$
(15)
$${\text{where}}\,D_{c} = \left[ {E^{ - 1} + \bar{\mathcal{\theta }}\Delta {t}\hat{G}_{{t}} } \right]^{ - 1} \,\,,\,\,\Delta \bar{q} = E\left( {\dot{\varepsilon }_{t}^{vp} \Delta {t + \bar{\theta }}\Delta {t}h_{{t}} \Delta \bar{\mathcal{\kappa }}} \right)\,\,.$$
(16)

The tensor \(D_{c}\) is the algorithmic tangent stiffness tensor. Following are the expressions derived for updating the stress–strain relation of the proposed model

$$\begin{aligned} \frac{{\partial g_{d} }}{{\partial \sigma_{ij}^{'} }} & = \sqrt {\frac{3}{2}} \frac{{S_{ij} }}{{\sqrt {S_{kl} S_{kl} } }} + \frac{{\delta_{ij} }}{3}\left( {M_{\text{c}} - \eta_{\text{yd}} } \right),{\text{where}}\,S_{ij} = \sigma_{ij}^{'} - \frac{{\sigma_{kk}^{'} \delta_{ij} }}{3},\eta_{\text{yd}} = \frac{{3\sqrt {3J_{2} } }}{{I_{1}^{'} }}\,\,, \\ \frac{{\partial^{2} g_{d} }}{{\partial \sigma_{ij}^{'} \partial \sigma_{pq}^{'} }} & = \sqrt {\frac{3}{2}} \left[ { - \frac{{S_{ij} S_{pq} }}{{2\left( {S_{kl} S_{kl} } \right)^{3/2} }} + \frac{{\delta_{pi} \delta_{qj} - {{\delta_{ij} \delta_{pq} } \mathord{\left/ {\vphantom {{\delta_{ij} \delta_{pq} } 3}} \right. \kern-0pt} 3}}}{{\sqrt {S_{kl} S_{kl} } }}} \right] - \frac{{\delta_{ij} }}{3}\frac{{\partial \eta_{\text{yd}} }}{{\partial \sigma_{pq}^{'} }}\,\,, \\ \frac{{\partial \eta_{\text{yd}} }}{{\partial \sigma_{pq}^{'} }} & = \sqrt {\frac{3}{2}} \frac{{3S_{pq} }}{{I_{1}^{'} \sqrt {S_{kl} S_{kl} } }} - \frac{{3\sqrt {3J_{2} } \delta_{pq} }}{{\left( {I_{1}^{'} } \right)^{2} }}\,\,,\hat{G}_{{{ijpq}}} { = n}\dot{\mathcal{\varepsilon }}_{\text{ref}} \frac{{\left( {\eta_{\text{yd}} } \right)^{n - 1} }}{{\left( {\eta_{\text{ys}} } \right)^{n} }}\frac{{\partial \eta_{\text{yd}} }}{{\partial \sigma_{pq}^{'} }}\frac{{\partial g_{d} }}{{\partial \sigma_{ij}^{'} }} + \dot{\mathcal{\varepsilon }}_{{\text{ref}}} \left( {\frac{{\eta_{\text{yd}} }}{{\eta_{\text{ys}} }}} \right)^{n} \frac{{\partial^{2} g_{d} }}{{\partial \sigma_{ij}^{'} \partial \sigma_{pq}^{'} }}\,\,, \\ {h}_{{{ij}}} \Delta \bar{{\kappa }} & { = - n}\dot{\mathcal{\varepsilon }}_{\text{ref}} \frac{{\left( {\eta_{\text{yd}} } \right)^{n} }}{{\left( {\eta_{\text{ys}} } \right)^{n + 1} }}\left[ {\frac{{\partial \eta_{\text{ys}} }}{{\partial \bar{\mathcal{\kappa }}_{{1}} }}\Delta \bar{\mathcal{\kappa }}_{{1}} + \frac{{\partial \eta_{\text{ys}} }}{{\partial \bar{\mathcal{\kappa }}_{{2}} }}\Delta \bar{\mathcal{\kappa }}_{{2}} } \right]\frac{{\partial g_{d} }}{{\partial \sigma_{ij}^{'} }}\,\,, \\ {\text{and}}\,\frac{{\partial \eta_{\text{ys}} }}{{\partial \bar{\mathcal{\kappa }}_{{1}} }} & = \frac{{\left( {\eta_{\text{ps}} - \eta_{\text{ys}} } \right)^{2} }}{{a\eta_{\text{ps}} }}\,,\,\,\frac{{\partial \eta_{\text{ys}} }}{{\partial \bar{\mathcal{\kappa }}_{{2}} }} = \frac{{\eta_{\text{ys}} }}{{\eta_{\text{ps}} }}\kappa v_{0} \,\,. \\ \end{aligned}$$
(17)

The stress increase for a given strain increment can be calculated from Eq. 16 along with Eq. 17, and subsequently, the viscoplastic strain increment can be estimated from Eq. 12. A complete explicit stress-point integration scheme has been adopted in the present work with \(\bar{\theta } = 0\). It is important to note that such an explicit integration scheme, also known as forward Euler scheme, is conditionally stable and requires smaller discretization step while performing the time integration. Alternatively, an implicit-type time integration scheme, which is usually more robust and unconditionally stable, can also be employed for this purpose [10].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M., Gupta, A. & Prashant, A. A rate-dependent model for sand to predict constitutive response and instability onset. Acta Geotech. 16, 93–111 (2021). https://doi.org/10.1007/s11440-020-00988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00988-8

Keywords

Navigation