Skip to main content
Log in

The use of QLARM to estimate seismic risk in Kirghizstan at the regional and city scales

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

An analysis of seismic risk using our tool QLARM has been performed for the Batken region including the cities of Aidarken and Kadamjay, 100 km SW of Osh. The damage to residential buildings and induced casualties has been estimated for a set of seismic scenarios of typical and maximum magnitude considering the existing seismicity data. Population and building datasets have been built based on up-to-date information, and for the two cities, satellite photographs and a field survey have been used. A preliminary soil response zonation is proposed using seismic ambient noise analyses. In the investigated region, the probability of damaging earthquakes with M > 6 is judged to be low because the slip accumulation rate along individual faults is only in the range of 0.01–0.3 cm/year. The amplification of seismic waves by soil deposits is estimated to be low; however, the proposed zonation needs to be complemented by additional seismic measurements. The calculations indicate that the combined fatalities of Kadamjay and Aidarken in a hypothetical earthquake of magnitude between 6.0 and 6.6 are fewer than 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdrakhmatov K (2009) ISTC Project No. KR 1176, Establishment of the Central Asia Seismic Risk Initiative (CASRI). Technical report on the work performed from: 02.01.2006 to 04.30.2009, Institute of Seismology, National Academia of Sciences, Kyrgyz Republic

  • Abdrakhmatov K, Havenith H-B, Delvaux D, Jongmans D, Trefois P (2003) Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia). J. Seismolog. 7:203–220

    Article  Google Scholar 

  • Bindi D, Abdrakhmatov K, Parolai S, Mucciarelli M, Gruenthal G, Ischuk A, Mikhailova N, Zschau J (2012) Seismic hazard assessment in Central Asia: outcomes from a site approach. Soil Dyn Earthq Eng 37:84–91

    Article  Google Scholar 

  • Fontiela J, Rosset P, Wyss M, Bezzeghoud M, Rodrigues F (2020) Human losses and damage expected in future earthquakes in Faial Island—Azores. Pure Appl Geophys 177:1831–1844

    Article  Google Scholar 

  • Global Human Settlement Layer (2016) Corbane C, Florczyk A, Pesaresi M, Politis P, Syrris V (2018) GHS built-up grid, derived from Landsat, multitemporal (1975-1990-2000-2014), R2018A. European Commission, Joint Research Centre (JRC) https://doi.org/10.2905/jrc-ghsl-10007

  • Gruenthal G (1998) European macroseismic scale. Conseil de l’Europe, Luxembourg

    Google Scholar 

  • Ischuk A, Bjerrum LW, Kamchybekov M, Abdrakhmatov K, Lindholm C (2018) Probabilistic seismic hazard assessment for the area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan, Central Asia. Bull Seis Soc Am 108(1):130–144

    Article  Google Scholar 

  • Kalmetieva ZA, Mikolaichuk AV, Moldobekov BD, Meleshko AV, Jantaev MM, Zubovich AV (2009) Atlas of earthquakes in Kyrgyzstan. Technical report UNISDR, ISBN 978-9967-25-829-7

  • Kobotoolbox (2019) https://www.kobotoolbox.org

  • Lang DH, Kumar A, Sulaymanov S, Meslem A (2018) Building typology classification and earthquake vulnerability scale of Central and South Asian building stock. J Build Eng 15:261–277

    Article  Google Scholar 

  • Lunedei E, Malischewsky P (2015) A review and some new issues on the theory of the H/V technique for ambient vibrations. In: Ansal A (ed) Perspectives on European earthquake engineering and seismology. Geotechnical, geological and earthquake engineering, vol 39. Springer, Cham, pp 371–394

    Chapter  Google Scholar 

  • Mohadjer S, Ehlers TA, Bendick R, Stübner K, Strube T (2016) A Quaternary fault database for central Asia. Nat Hazards Earth Syst Sci 16:529–542

    Article  Google Scholar 

  • NOAA (2019). National Geophysical Data Center/World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5TD9V7K

  • OpenStreetMap (2017) https://www.openstreetmap.org

  • Parvez I, Rosset P (2014) The role of microzonation in estimating earthquake risk. In: Earthquake, hazard, risk and disaster, Elsevier’s hazards and disaster series, pp 273–308

  • Rosset P, Wyss M (2017) Seismic loss assessment in Algeria using the tool QLARM. Civil Eng Res J. https://doi.org/10.19080/CERJ.2017.02.555583

    Article  Google Scholar 

  • Rosset P, Bonjour C, Wyss M (2015) QLARM, un outil d’aide à la gestion du risque sismique à échelle variable. In: Leone F, Vinet F (eds) Plan de sauvegarde et outils de gestion de crise. Presses Universitaires de la Méditerranée, Collection Géorisques, Montpellier, pp 91–98

    Google Scholar 

  • Shebalin NV (1968) Methods of engineering seismic data application for seismic zoning. In: Medvedev SV (ed) Seismic zoning of the USSR. Science, Moscow, pp 95–111

    Google Scholar 

  • Shebalin NV (1985) Regularities of the natural disasters (in Russian). Nauki o zemle, Znanie 11:48

    Google Scholar 

  • Tolis S, Rosset P, Wyss M (2013) Detailed building stock at regional scale in three size categories of settlements for 18 countries worldwide, Geneva, Switzerland. UNISDR report, 87 pages and appendix, https://www.unisdr.org/we/inform/publications/49798

  • Torgoev I, Havenith HB, Wyss M., Rosset P, Tolis S (2019) Oцeнки ceйcмичecкoй oпacнocти в Бaткeнcкoй oблacти и coпyтcтвyющиx pиcкoв в Кaдaмжae и Aйдapкeнe//Moнитopинг, пpoгнoзиpoвaниe oпacныx пpoцeccoв и явлeний нa тeppитopии Кыpгызcкoй Pecпyблики (Изд. 16-e c изм. и дoп.), Бишкeк: MЧC КP, pp 688–709 (in Russian)

  • Trendafiloski G, Wyss M, Rosset P, Marmureanu G (2009) Constructing city models to estimate losses due to earthquakes worldwide: application to Bucharest Romania. Earthq Spectra 25(3):665–685

    Article  Google Scholar 

  • Trendafiloski G, Wyss M, Rosset P (2011) Loss estimation module in the second generation software QLARM. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes: progress in modeling and mitigation. Springer, Berlin, pp 381–391

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wieland M, Pittore M, Parolai S, Begaliev U, Yasunov P, Tyagunov S, Moldobekov B, Saidiy S, Ilyasov I, Abakanov T (2015) A multiscale exposure model for seismic risk assessment in central Asia. Seismol Res Lett 86(1):210–222

    Article  Google Scholar 

  • Wyss M (2008) Estimated human losses in future earthquakes in central Myanmar. Seismol Res Lett 79(4):504–509

    Article  Google Scholar 

  • Wyss M (2010) Predicting the human losses implied by predictions of earthquakes: Southern Sumatra and Central Chile. In: Savage MK, Rhoades DA, Smith EGC, Gerstenberger MC, Vere-Jones D (eds) Seismogenesis and earthquake forecasting: The Frank Evison Volume II. Pageoph Topical Volumes. Springer, Basel. https://doi.org/10.1007/s00024-010-0090-4

    Chapter  Google Scholar 

  • Wyss M (2014) Ten years of real-time earthquake loss alerts. In: Wyss M (ed) Earthquake Hazard, Risk, and Disasters. Elsevier, Waltham, pp 143–165

    Chapter  Google Scholar 

  • Wyss M (2017) Reported estimated quake death tolls to save lives. Nature 545(7653):151–153

    Article  Google Scholar 

  • Wyss M, Chamlagain D (2019) Estimated casualties in possible future earthquakes south and west of the M7.8 Gorkha earthquake of 2015. Acta Geophys 67:423–429

    Article  Google Scholar 

  • Wyss M, Rosset Ph (2013) Mapping seismic risk: the current crisis. Nat Hazard 68(1):49–52

    Article  Google Scholar 

  • Wyss M, Zuniga R (2016) Estimated casualties in a possible great earthquake along the Pacific coast of Mexico. Bull Seismol Soc Am 106(4):1867–1874

    Article  Google Scholar 

  • Wyss M, Tolis S, Rosset P, Pacchiani F (2013) Approximate Model for Worldwide Building Stock in Three Size Categories of Settlements, Geneva, Switzerland. UNISDR report, 34 pages and appendix, https://www.preventionweb.net/english/hyogo/gar/2013/en/bgdocs/WAPMERR,%202012.pdf

  • Wyss M, Gupta S, Rosset P (2017) Casualty estimate in two up-dip complementary Himalayan earthquakes. Seismol Res Lett 86(6):1508–1515

    Article  Google Scholar 

  • Wyss M, Rosset P, Tolis S, Havenith HB, Torgoev I, Speiser M (2018a) Evaluation of the seismic hazard and risk in the Batken region, Kyrgyzstan, with special attention to waste deposits. ICES technical report to MSF

  • Wyss M, Gupta S, Rosset P (2018b) Casualty estimate in repeat Himalayan earthquakes in India. Bull Seismol Soc Am 108(5A):2877–2893

    Article  Google Scholar 

  • Xu Y, Roecker SW, Wei R, Zhang W, Wei B (2006) Analysis of seismic activity in the crust from earthquake relocation in the central Tien Shan. Bull Seismol Soc Am 96:737–744

    Article  Google Scholar 

  • Zhang P, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Article  Google Scholar 

Download references

Acknowledgements

The project was funded by Médecins Sans Frontières (MSF) office in Geneva, Switzerland. It benefits from the support of Philippe Calain and the logistic of the MSF team in Kirgizstan and in Geneva. The project was under the auspice of the Kyrgyz Minister of Emergency. We thank the reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Rosset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosset, P., Tolis, S. & Wyss, M. The use of QLARM to estimate seismic risk in Kirghizstan at the regional and city scales. Acta Geophys. 68, 979–991 (2020). https://doi.org/10.1007/s11600-020-00449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00449-6

Keywords

Navigation