Skip to main content
Log in

Enthalpy of Formation of Erbium-Doped Bismuth Niobate

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic characteristics of bismuth niobate doped with erbium Bi3Nb0.2Er0.8O6.2 have been determined. This compound is a representative of a promising class of ionic conductors. The solution enthalpies of bismuth oxide, erbium oxide, niobium chloride, and Bi3Nb0.2Er0.8O6.2 have been measured in 4 M HCl using solution calorimetry. Based on the experimental and reported data, we have calculated the standard formation enthalpy ΔfH°(Bi3Nb0.2Er0.8O6.2, 298.15 K) = −1787.5 ± 8.9 kJ/mol and the lattice enthalpy ΔlatH°(Bi3Nb0.2Er0.8O6.2, 298.15 K) = −28 540 kJ/mol. The obtained thermodynamic characteristics can be used to develop recommendations for optimizing the synthesis of materials based on bismuth oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. Li, G. Li, and C. Greaves, J. Mater. Chem. 6, 5260 (2018). https://doi.org/10.1039/C7TA06883B

    Article  CAS  Google Scholar 

  2. T. B. Tran and A. Navrotsky, Chem. Mater. 24, 4185 (2012). https://doi.org/10.1021/cm302446e

    Article  CAS  Google Scholar 

  3. V. N. Guskov, K. S. Gavrichev, P. G. Gagarin, et al., Russ. J. Inorg. Chem. 64, 1265 (2019). https://doi.org/10.1134/S0036023619100048

    Article  CAS  Google Scholar 

  4. Z. A. Mikhailovskaya, S. A. Petrova, I. Abrahams, et al., Ionics 24, 3983 (2018). https://doi.org/10.1007/s11581-018-2543-1

    Article  CAS  Google Scholar 

  5. V. N. Guskov, E. G. Sazonov, K. S. Gavrichev, et al., Russ. J. Inorg. Chem. 64, 1041 (2019). https://doi.org/10.1134/S0036023619080059

    Article  CAS  Google Scholar 

  6. N. I. Matskevich, Th. Wolf, C. Greaves, et al., J. Chem. Thermodyn. 91, 234 (2015). https://doi.org/10.1016/j.jct.2015.07.036

    Article  CAS  Google Scholar 

  7. O. S. Kaimieva, E. S. Buyanova, S. A. Petrova, et al., Russ. J. Inorg. Chem. 64, 423 (2019). https://doi.org/10.1134/S0036023619040120

    Article  CAS  Google Scholar 

  8. M. Leszczynska, M. Holdynski, F. Krok, et al., Solid State Ionics 181, 796 (2010). https://doi.org/10.1016/j.ssi.2010.04.012

    Article  CAS  Google Scholar 

  9. G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575, 75 (2019). https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  PubMed  Google Scholar 

  10. L. T. Denisova, Yu. F. Kargin, N. V. Belousova, et al., Russ. J. Inorg. Chem. 64, 725 (2019). https://doi.org/10.1134/S0036023619060056

    Article  CAS  Google Scholar 

  11. I. Abrahams, A. Kozanecka-Szmigiel, F. Krok, et al., Solid State Ionics 177, 1761 (2006). https://doi.org/10.1016/j.ssi.2006.01.036

    Article  CAS  Google Scholar 

  12. Yu. V. Emel’yanova, A. A. Krylov, A. D. Kazantseva, et al., Russ. J. Inorg. Chem. 64, 151 (2019). https://doi.org/10.1134/S0036023619020050

    Article  Google Scholar 

  13. Q. Zhang, A. Yan, Z. Cui, et al., J. Chem. Thermodyn. 130, 154 (2019). https://doi.org/10.1016/j.jct.2018.09.028

    Article  CAS  Google Scholar 

  14. L. N. Levchenko, N. I. Matskevich, V. E. Kerzhentseva, et al., Russ. J. Inorg. Chem. 63, 923 (2018). https://doi.org/10.1134/S0036023618070136

    Article  CAS  Google Scholar 

  15. A. I. Gruzhinina, L. A. Tiflova, A. S. Monaenkova, et al., Russ. J. Phys. Chem. A 93, 2101 (2019). https://doi.org/10.1134/S0036024419110098

    Article  Google Scholar 

  16. J. T. Hughes and A. Navrotsky, J. Am. Chem. Soc. 133, 9184 (2011). https://doi.org/10.1021/ja202132h

    Article  CAS  PubMed  Google Scholar 

  17. P. M. Aiswarya, S. S. Kumar, R. Ganesan, et al., Thermochim. Acta 682, 178401 (2019). https://doi.org/10.1016/j.tca.2019.178401

    Article  CAS  Google Scholar 

  18. R. Gunter, M. Pfestorf, J. Rother, et al., J. Therm. Anal. 33, 359 (1988). https://doi.org/10.1007/BF01914624

    Article  Google Scholar 

  19. A. Sanahuja and E. Cesari, J. Chem. Thermodyn. 16, 1195 (1984). https://doi.org/10.1016/0021-9614(84)90192-7

    Article  CAS  Google Scholar 

  20. V. P. Glushko, Thermal Constants of Substances (VINITI, Moscow, (1965–1982), Nos. 1–10.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Semerikova, A.N., Gelfond, N.V. et al. Enthalpy of Formation of Erbium-Doped Bismuth Niobate. Russ. J. Inorg. Chem. 65, 743–746 (2020). https://doi.org/10.1134/S0036023620050162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050162

Keywords:

Navigation