Skip to main content
Log in

Germanate NdGaGe2O7: Synthesis, Structure, and Thermophysical Properties

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Polycrystalline samples of gallium neodymium germanate NdGaGe2O7 were synthesized by solid-phase reactions from a stoichiometric mixture of oxides Nd2O3, Ga2O3, and GeO2 under sequential stepwise calcination in the air at temperatures in the range 1273–1473 K. The heat capacity–temperature dependence for the synthesized samples was studied by differential scanning calorimetry in the range 350–1000 K. The experimental Cp = f(T) data were used to calculate the thermodynamic functions (enthalpy, entropy, and reduced Gibbs energy changes) of NdGaGe2O7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. Jarchow, K.-H. Klaska, and H. Schenk-Strauß, Z. Kristallogr. 172, 159 (1985).

  2. B. V. Mill’, Z. A. Kazei, S. I. Reiman, et al., Vestn. Mosk. Univ. Ser. 3: Fiz., Astronom. 28 (4), 95 (1987).

    Google Scholar 

  3. L. Bucio, C. Cascales, J. A. Alonso, et al., J. Phys.: Condens. Matter 8, 2641 (1996).

    CAS  Google Scholar 

  4. E. A. Juarez-Arellano, J. Campa-Molina, S. Ulloa-Godinez, et al., Mater. Res. Soc. Symp. Proc. 848, FF6.15.1 (2005).

  5. A. A. Kaminskii, H. Rhee, O. Lux, et al., Laser. Phys. Lett. 19, 075803-1 (2013). https://doi.org/10.1088/1612-2011/10/7/0755803

    Article  Google Scholar 

  6. L. T. Denisova, Yu. F. Kargin, L. A. Irtyugo, et al., Inorg. Mater. 54, 1245 (2018). https://doi.org/10.1134/S0020168518120026

    Article  CAS  Google Scholar 

  7. E.-A. Juarez-Arellano, I. Rosales, L. Bucio, et al., Acta Crystallogr., Sect. C 58, i135 (2002). https://doi.org/10.1107/S010827010201/3343

  8. E. A. Juarez-Arellano, I. Rosales, A. Oliver, et al., Acta Crystallogr., Sect. C 60, i14 (2004). https://doi.org/10.1107/S0108270/03029056

    Article  Google Scholar 

  9. L. Bucio, C. Cascales, J. A. Alonso, et al., Mater. Sci. Forum, 735 (1996). https://doi.org/10.4028/www.Scientific.net/MSF.228-231.735

  10. C. Cascales, Puebla. Gutierrez, S. Klimin, et al., Chem. Mater. 11, 2520 (1999).

    Article  CAS  Google Scholar 

  11. E. J. Baran, C. Cascales, and R. C. Mercader, Spectrochim. Acta A 56, 1277 (2000).

    Article  Google Scholar 

  12. E. A. Juárez-Arellano, L. Bucio, J. L. Ruvalcaba, et al., Z. Kristallogr. 217, 201 (2002).

    Google Scholar 

  13. C. Cascales, M. T. Fernandez-Diaz, M. A. Monge, et al., Chem. Mater. 14, 1995 (2002).

    Article  CAS  Google Scholar 

  14. A. A. Kaminskii, B. V. Mill, A. V. Butashin, et al., Phys. Status Solidi A 103, 575 (1987).

    Article  CAS  Google Scholar 

  15. G. Lozano, C. Cascales, C. Zaldo, and P. Porcher, J. Alloys Compd. 303304, 349 (2000).

  16. U. W. Becker and J. Felsche, J. Less-Common Met. 128, 269 (1987).

    Article  CAS  Google Scholar 

  17. L. T. Denisova, L. A. Irtyugo, V. V. Beletskii, et al., Phys. Solid State 60, 626 (2018). https://doi.org/10.1134/S1063783418030071

    Article  CAS  Google Scholar 

  18. L. T. Denisova, L. A. Irtyugo, and Yu. F. Kargin, Inorg. Mater. 53, 93 (2017). https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  19. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  20. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3234 (1932).

    Article  Google Scholar 

  21. J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al., Thermochim. Acta 395, 27 (2003).

    Article  CAS  Google Scholar 

  22. G. K. Moiseev, N. A. Vatolin, L. A. Marshuk, and N. I. Il’inykh, Temperature-Dependent Reduced Gibss Energies of Selected Inorganic Compounds. ASTRA.OWN Alternative Database (UrO RAN, Ekaterinburg; 1997).

    Google Scholar 

  23. A. G. Morachevskii, I. B. Sladkov, and E. G. Firsova, Thermodynamic Calculations in Chemistry and Metallurgy (Lan’, St. Petersburg, 2018) [in Russian].

  24. V. N. Kumok, Direct and Inverse Problems of Chemical Thermodynamics (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  25. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry (Pergamon, Oxford, 1979; Metallurgy, Moscow, 1982).

  26. L. T. Denisova, L. A. Irtyugo, Yu. F. Kargin, et al., Russ. J. Inorg. Chem. 64, 1161 (2019). https://doi.org/10.1134/S0036023619090079

    Article  CAS  Google Scholar 

  27. L. T. Denisova, L. A. Irtyugo, Yu. F. Kargin, et al., Russ. J. Inorg. Chem. 63, 361 (2018). https://doi.org/10.1134/S003602361803004X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Irtyugo, L.A. et al. Germanate NdGaGe2O7: Synthesis, Structure, and Thermophysical Properties. Russ. J. Inorg. Chem. 65, 631–635 (2020). https://doi.org/10.1134/S0036023620050071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050071

Keywords:

Navigation