Skip to main content
Log in

Thermal Analysis Study of Phase Transformations of Magnesium and Calcium Methanesulfonates

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Anhydrous magnesium methanesulfonate (Mg(SO3CH3)2) and calcium methanesulfonate (Ca(SO3CH3)2) as well as hydrates Mg(SO3CH3)2 · 2H2O and Mg(SO3CH3)2 · 12H2O have been prepared and identified. Thermal degradation of the salts in air has been studied by thermogravimetric analysis. Parameters of phase transformations of Ca(SO3CH3)2 and Mg(SO3CH3)2 · 2H2O observed at –62.7 and –119°С, respectively, have been found by differential scanning calorimetry. Melting point of Mg(SO3CH3)2 · 12H2O (45.4°С) synthesized immediately in DSC instrument because of compound instability in air has been determined. Incongruent melting has been shown for Mg(SO3CH3)2 · 12H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Diaz-Urrutia and T. Ott, Science 363, 1326 (2019). https://doi.org/10.1126/science.aav0177

    Article  CAS  PubMed  Google Scholar 

  2. D. A. Kosova, T. I. Navalayeu, A. I. Maksimov, et al., Fluid Phase Equilib. 443, 23 (2017). https://doi.org/10.1016/j.fluid.2017.04.006

    Article  CAS  Google Scholar 

  3. R. J. Maxwell, L. S. Silbert, and J. R. Russell, J. Org. Chem. 42, 1515 (1977). https://doi.org/10.1021/jo00429a005

    Article  CAS  Google Scholar 

  4. C. H. Wei, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 42, 1839 (1986). https://doi.org/10.1107/S0108270186090340

    Article  Google Scholar 

  5. Yu. V. Kokunov, V. V. Kovalev, Yu. E. Gorbunova, et al., Russ. J. Coord. Chem. 44, 103 (2018). https://doi.org/10.1134/S1070328418020069

    Article  CAS  Google Scholar 

  6. M. Finšgar and I. Milošev, Corros. Sci. 52, 2430 (2010). https://doi.org/10.1016/j.corsci.2010.04.001

    Article  CAS  Google Scholar 

  7. F. C. Walsh and C. P. de León, Surf. Coat. Technol. 259, 676 (2014). https://doi.org/10.1016/j.surfcoat.2014.10.010

    Article  CAS  Google Scholar 

  8. Y. Tian, X. Meng, and J. Duan, Ind. Eng. Chem. Res. 51, 13627 (2012). https://doi.org/10.1021/ie302015v

    Article  CAS  Google Scholar 

  9. B. X. Luong, A. L. Petre, W. F. Hoelderich, et al., J. Catal. 226, 301 (2004). https://doi.org/10.1016/j.jcat.2004.05.025

    Article  CAS  Google Scholar 

  10. D. Liu, Z. Wei, Y. Shen, et al., J. Mater. Chem. A 3, 20322 (2015). https://doi.org/10.1039/C5TA05497D

    Article  CAS  Google Scholar 

  11. D. W. Rackemann, J. P. Bartley, and O. S. Doherty, Ind. Crops Prod. 52, 46 (2014). https://doi.org/10.1016/j.indcrop.2013.10.026

    Article  CAS  Google Scholar 

  12. T. Friščić, I. Halasz, P. J. Beldon, et al., Nat. Chem. 5, 66 (2013). https://doi.org/10.1038/nchem.1505

    Article  CAS  PubMed  Google Scholar 

  13. J. J. Calvin, M. Asplund, Z. Akimbekov, et al., J. Chem. Thermodyn. 116, 341 (2018). https://doi.org/10.1016/j.jct.2017.10.002

    Article  CAS  Google Scholar 

  14. P. K. Leung, C. Ponce-de-León, C.T.J. Low, et al., J. Power Sources 196, 5174 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.095

    Article  CAS  Google Scholar 

  15. G. Nikiforidis and W. A. Daoud, Electrochim. Acta 141, 255 (2014). https://doi.org/10.1016/j.electacta.2014.06.142

    Article  CAS  Google Scholar 

  16. B. R. Bzdek, D. P. Ridge, and M. V. Johnston, J. Geophys. Res.: Atmos. 116, 1 (2011). https://doi.org/10.1029/2010JD015217

    Article  Google Scholar 

  17. K. C. Kwong, M. M. Chim, E. H. Hoffmann, et al., ACS Earth Space Chem. 2, 895 (2018). https://doi.org/10.1021/acsearthspacechem.8b00072

    Article  CAS  Google Scholar 

  18. E. S. Saltzman, D. L. Savoie, and J. M. Prospero, J. Atmos. Chem. 4, 227 (1986). https://doi.org/10.1007/BF00052002

    Article  CAS  Google Scholar 

  19. A. A. Pszenny, J. Atmos. Chem. 14, 273 (1992). https://doi.org/10.1007/BF00115239

    Article  CAS  Google Scholar 

  20. D. P. Kelly and J. C. Murrell, Arch. Microbiol. 172, 341 (1999). https://doi.org/10.1007/s002030050770

    Article  CAS  PubMed  Google Scholar 

  21. K. A. Welch, P. A. Mayewski, and S. I. Whitlow, Geophys. Rev. Lett. 20, 443 (1993). https://doi.org/10.1029/93GL00499

    Article  Google Scholar 

  22. T. Sakurai, H. Ohno, F. E. Genceli, et al., J. Glaciol. 56, 837 (2010). https://doi.org/10.3189/002214310794457335

    Article  CAS  Google Scholar 

  23. M. D. Gernon, M. Wu, T. Buszta, et al., Green Chem. 1, 127 (1999). https://doi.org/10.1039/A900157C

    Article  CAS  Google Scholar 

  24. G. F. Voronin, Fundamentals of Thermodynamics (Moscow Univ. Press, Moscow, 1987) [in Russian].

    Google Scholar 

  25. M. Wang, Z. G. Song, H. Jiang, et al., J. Therm. Anal. Calorim. 98, 801 (2009). https://doi.org/10.1007/s10973-009-0119-z

    Article  CAS  Google Scholar 

  26. F. E. G. Guner, M. Lutz, T. Sakurai, et al., Cryst. Growth Des. 10, 4327 (2010). https://doi.org/10.1021/cg100234e

    Article  CAS  Google Scholar 

  27. F. E. G. Guner, T. Sakurai, and T. Hondoh, Eur. J. Mineral. 25, 79 (2012). https://doi.org/10.1127/0935-1221/2013/0025-2257

    Article  CAS  Google Scholar 

  28. F. Charbonnier, R. Faure, and H. Loiseleur, J. Appl. Crystallogr. 8, 694 (1975). https://doi.org/10.1021/cg100234e

    Article  CAS  Google Scholar 

  29. Yu. A. Zolotov, Principles of Analytical Chemistry (Vysshaya shkola, Moscow, 2001) [in Russian].

Download references

ACKNOWLEDGMENTS

The authors thank the Center for Molecular Structure Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, and Professor, Dr. Sci. (Chem.) A.A. Goryunkov, head of Laboratory of Thermochemistry, Moscow State University, for the possibility to publish this material.

Funding

This work was performed using equipment of the Shared Facility Center, Moscow State University, under the Program of Development for the Moscow State University, with financial support by the Russian Foundation for Basic Research (project for young scientists no. 16-33-00958 “Structure, Physicochemical Properties of Phases and Phase Equilibria in the Systems of Salts of Methanesulfonic Acid with Mono- and Divalent Cations”), and partial support of the “Chemical Thermodynamics” project (АААА-А16-116061750195-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kosova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosova, D.A., Provotorov, D.I., Kuzovchikov, S.V. et al. Thermal Analysis Study of Phase Transformations of Magnesium and Calcium Methanesulfonates. Russ. J. Inorg. Chem. 65, 752–757 (2020). https://doi.org/10.1134/S0036023620050125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050125

Keywords:

Navigation