Skip to main content
Log in

Low-Temperature Thermodynamic Properties of Cobalt Trisdipivaloyl Methanate

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The heat capacity of cobalt trisdipivaloyl methanate Co(C11H19O2)3 was measured by the adiabatic method within the temperature range 8.18–301.61 K. The analysis of the functional dependence of the heat capacity did not revealed any thermal anomalies in its behavior. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs energy) were calculated from the measured experimental data on the heat capacity within a temperature range of 0–300 K. The absolute entropy was used to calculate the formation entropy of Co(C11H19O2)3 at Т = 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. J. Pollard, B. A. Weinstock, T. E. Bitterwolf, et al., J. Catal. 254, 218 (2008). https://doi.org/10.1016/j.jcat.2008.01.001

    Article  CAS  Google Scholar 

  2. Y. Ikedo, J. Sugiyama, H. Nozaki, et al., Phys. Rev. B: Condens. Matter 75, 054424 (2007). https://doi.org/10.1103/physrevb.75.054424

    Article  Google Scholar 

  3. L. D. Kadam and P. S. Patil, Sol. En. Mater. Sol. Cells 70, 15 (2001). https://doi.org/10.1016/S0927-0248(00)00404-9

    Article  CAS  Google Scholar 

  4. J. Moon T. K. Kim, B. Van Saders, et al., Sol. En. Mater. Sol. Cells 134, 417 (2015).

    Article  CAS  Google Scholar 

  5. H.-J. Nam, T. Sasaki, and N. Koshizaki, J. Phys. Chem. B 110, 23 081 (2006). https://doi.org/10.1021/jp063484f

    Article  CAS  Google Scholar 

  6. S. Vladimirova, V. Krivetskiy, M. Rumyantseva, et al., Sensors 17, 2216 (2017). https://doi.org/10.3390/S17102216

    Article  Google Scholar 

  7. A. Patil, V. Patil, D. W. Shin, et al., Mater. Res. Bull. 43, 1913 (2008). https://doi.org/10.1016/J.materresbull.2007.08.031

    Article  CAS  Google Scholar 

  8. F. Alemaa, A. Osinskya, P. Mukhopadhyay, et al., J. Cryst. Growth 525, 125207 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125207

    Article  CAS  Google Scholar 

  9. B. D. Fahlman and A. R. Barron, Adv. Mater. Opt. Electron. 10, 223 (2000). https://doi.org/10.1002/1099-0712(200005/10)10:3/5%3c-223::aid-amo411%3e3.0.co;2-m

    Article  CAS  Google Scholar 

  10. M. A. K. Ahmed, H. Fjellva, A. Kjekshus, et al., Z. Anorg. Allg. Chem. 634, 247 (2008). https://doi.org/10.1002/zaac.200700462

    Article  CAS  Google Scholar 

  11. M. R. Bissengaliyeva, D. B. Gogol, N. S. Bekturganov, et al., J. Chem. Eng. Data 56, 1941 (2011).

    Article  CAS  Google Scholar 

  12. A. V. Tyurin, A. V. Khoroshilov, V. N. Guskov, et al., Russ. J. Inorg. Chem. 63, 1599 (2018). https://doi.org/10.1134/S0036023618120215

    Article  CAS  Google Scholar 

  13. V. N. Guskov, E. G. Sazonov, A. V. Tyurin, et al., Russ. J. Inorg. Chem. 64, 1041 (2019). https://doi.org/10.1134/S0036023619080059

    Article  CAS  Google Scholar 

  14. A. E. Musikhin, V. N. Naumov, M. A. Bespyatov, et al., Thermochim. Acta 670, 107 (2018).

    Article  CAS  Google Scholar 

  15. B. E. Bryant and W. C. Fernelius, Inorg. Synth. 5, 188 (1957).

    CAS  Google Scholar 

  16. H. Lee, C. H. Lee, I. S. Oh, et al., Bull. Korean Chem. Soc. 31, 891 (2010).

    Article  CAS  Google Scholar 

  17. V. A. Drebushchak, V. N. Naumov, V. V. Nogteva, et al., Thermochim. Acta 348, 33 (2000).

    Article  CAS  Google Scholar 

  18. M. A. Bespyatov, T. M. Kuzin, V. N. Naumov, et al., J. Therm. Anal. Calorim. 123, 899 (2016).

    Article  CAS  Google Scholar 

  19. N. P. Rybkin, M. P. Orlova, A. K. Baranyuk, et al., Meas. Tec. 17, 1021 (1974).

    Article  Google Scholar 

  20. L. Z. Rumshiskii, Mathematical Processing of Experimental Results. Reference Book (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  21. M. A. Bespyatov, A. E. Musikhin, V. N. Naumov, et al., J. Chem. Thermodyn. 118, 21 (2018).

    Article  CAS  Google Scholar 

  22. M. W. Chase, Jr., J. Phys. Chem. Ref. Data Monograph 1, 1951 (1998).

    Google Scholar 

  23. W. DeSorbo and W. W. Tyler, J. Chem. Phys. 21, 1660 (1953).

    Article  CAS  Google Scholar 

  24. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1984).

    Google Scholar 

Download references

Funding

This work was performed within the state assignment to the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Chernyaikin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyaikin, I.S., Bespyatov, M.A., Dorovskikh, S.I. et al. Low-Temperature Thermodynamic Properties of Cobalt Trisdipivaloyl Methanate. Russ. J. Inorg. Chem. 65, 650–654 (2020). https://doi.org/10.1134/S0036023620050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050058

Keywords:

Navigation