Skip to main content
Log in

Pb0.5 + xMgxZr2 – x(PO4)3(x = 0, 0.5) Phosphates: Structure and Thermodynamic Properties

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—Crystalline Pb0.5 +xMgxZr2 –x(PO4)3 (x = 0, 0.5) phosphates of NaZr2(PO4)3 (NZP) structural type were synthesized. The heat capacity of Pb0.5Zr2(PO4)3 was measured by adiabatic vacuum and differential scanning calorimetry (DSC) within the temperature range 8–660 K. The studied phosphates were found to experience a reversible phase transition in the region 256–426 K. According to the results of Rietveld structural study, this transition occurred due to an increase in disorder of lead cation positions in cavities of the NZP structure. The measurements of PbMg0.5Zr1.5(PO4)3 heat capacity in the temperature range 195–660 K showed that it experienced a similar phase transition at 255–315 K. Based on the measured experimental data, the thermodynamic functions of Pb0.5Zr2(PO4)3, such as \(C_{p}^{0}(T),\) [H0(T) – H0(0)], S0(T), and [G0(T) – H0(0)] were calculated for the temperature range 0–660 K. The standard formation enthalpy of Pb0.5Zr2(PO4)3 was determined at 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. I. Kimpa, M. Z. H. Mayzan, J. A. Yabagi, et al., IOP Conf. Ser.: Earth Env. Sci. 140, 012 156 (2018). https://doi.org/10.1088/1755-1315/140/1/012156

  2. L. Small, J. Wheeler, J. Ihlefeld, et al., J. Mater. Chem. A 6, 9691 (2018). https://doi.org/10.1039/C7TA09924J

    Article  CAS  Google Scholar 

  3. V. I. Pet’kov, Russ. Chem. Rev. 81, 606 (2012). https://doi.org/10.1070/RC2012v081n07ABEH004243

    Article  CAS  Google Scholar 

  4. B. E. Scheetz, D. K. Agrawal, E. Breval, and R. Roy, Waste Manag. 14, 489 (1994).

    Article  CAS  Google Scholar 

  5. V. Pet’kov, E. Asabina, V. Loshkarev, and M. Sukhanov, J. Nucl. Mater. 471, 122 (2016). https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  6. E. Asabina, V. Pet’kov, P. Mayorov, et al., Pure Appl. Chem. 89, 523 (2017). https://doi.org/10.1515/pac-2016-1005

    Article  CAS  Google Scholar 

  7. V. I. Pet’kov, V. S. Kurazhkovskaya, A. I. Orlova, and M. L. Spiridonova, Crystallogr. Rep. 47, 736 (2002). https://doi.org/10.1134/1.1509386

    Article  CAS  Google Scholar 

  8. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  CAS  Google Scholar 

  9. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994).

    Article  CAS  Google Scholar 

  10. V. M. Malyshev, G. A. Mil’ner, E. L. Sorokin, et al., Pribory Tekh. Eksp. 6, 195 (1985).

    Google Scholar 

  11. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  12. G. W. H. Hohne, W. F. Hemminger, and H. F. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin/Heidelberg, 2003).

    Book  Google Scholar 

  13. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).

    Article  CAS  Google Scholar 

  14. A. Mouline, M. Alami, R. Brochu, et al., J. Solid State Chem. 152, 453 (2000). https://doi.org/10.1006/jssc.2000.8711

    Article  CAS  Google Scholar 

  15. S. A. Larregola, J. A. Alonso, J. C. Pedregosa, et al., Dalton Trans., No. 28, 5453 (2009). https://doi.org/10.1039/B821688F

  16. S. A. Larregola, J. A. Alonso, M. Alguero, et al., Dalton Trans. 39, 5159 (2010). https://doi.org/10.1039/C0DT00079E

    Article  CAS  PubMed  Google Scholar 

  17. T. S. Yakubov, Dokl. Akad. Nauk SSSR 310, 145 (1990).

    Google Scholar 

  18. A. D. Izotov, O. V. Shebershneva, and K. S. Gavrichev, Proceedings of the All-Russia Conference on Thermal Analysis and Calorimetry, Kazan, 1996 (Kazan, 1996), p. 200.

  19. V. V. Tarasov, Zh. Fiz. Khim. 24, 111 (1950).

    CAS  Google Scholar 

  20. V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Khim. 39, 2077 (1965).

    CAS  Google Scholar 

  21. CODATA Key Values for Thermodynamics, Ed. by J. D. Cox, D. D. Wagman, and V. A. Medvedev (New York, 1984).

    Google Scholar 

  22. Thermal Constants of Materials, Ed. by V. P. Glushko (Nauka, Moscow, 1965–1981) [in Russian].

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 19-33-90075 and 18-29-12063) and by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 4.8337.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorov, P.A., Asabina, E.A., Pet’kov, V.I. et al. Pb0.5 + xMgxZr2 – x(PO4)3(x = 0, 0.5) Phosphates: Structure and Thermodynamic Properties. Russ. J. Inorg. Chem. 65, 711–719 (2020). https://doi.org/10.1134/S0036023620050137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050137

Keywords:

Navigation