Skip to main content
Log in

Optimization of the Thermodynamic Properties of the Sm2O3–Y2O3–HfO2 System at High Temperatures by the Barker Method

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic properties of the Sm2O3–Y2O3–HfO2 system at 2500 K were modeled based on the generalized lattice theory of associated solutions using experimental data obtained by high-temperature mass spectrometry. A comparison was made between the results of the calculations of the thermodynamic properties of the Sm2O3–Y2O3–HfO2 system using two independent approaches to modeling based on this theory: from the experimental data on the properties of the ternary system and from the data on its boundary binary systems Sm2O3–Y2O3, Sm2O3–HfO2, and Y2O3–HfO2. It was shown that the chemical potentials of the components that were calculated in the studied ternary system using the above approaches much better fit the experimental data in the former case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. A. Barker, J. Chem. Phys. 20, 1526 (1952).

    Article  CAS  Google Scholar 

  2. J. A. Barker and F. Smith, J. Chem. Phys. 22, 375 (1954). https://doi.org/10.1063/1.1740077

    Article  CAS  Google Scholar 

  3. L. M. Kurtynina, N. A. Smirnova, and P. F. Andrukovich, Khim. Termodin. Rastvorov, No. 2, 43 (1968).

    Google Scholar 

  4. M. V. Alekseeva, K. Zyunel’, E. M. Piotrovskaya, et al., Vestn. Leningr. Univ., No. 11, 43 (1985).

  5. J. R. Goats, J. B. Ott, R. L. Snow, et al., J. Chem. Thermodyn. 12, 447 (1980). https://doi.org/10.1016/0021-9614(80)90058-0

    Article  Google Scholar 

  6. M. M. Shul’ts, G. G. Ivanov, V. L. Stolyarova, et al., Fiz. Khim. Stekla 12, 285 (1986).

    Google Scholar 

  7. M. M. Shul’ts, G. G. Ivanov, V. L. Stolyarova, et al., Fiz. Khim. Stekla 12, 385 (1986).

    Google Scholar 

  8. M. M. Shul’ts, G. G. Ivanov, and V. L. Stolyarova, Dokl. Akad. Nauk SSSR 292 (5), 1198 (1987).

    Google Scholar 

  9. V. L. Stolyarova, G. G. Ivanov, and M. M. Shul’ts, Dokl. Akad. Nauk SSSR 305 (2), 383 (1989).

    CAS  Google Scholar 

  10. V. L. Stolyarova, Russ. Chem. Rev. 85, 60 (2016). https://doi.org/10.1070/RCR4549

    Article  CAS  Google Scholar 

  11. V. L. Stolyarova, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 64, 258 (2019). https://doi.org/10.1016/j.calphad.2018.12.013

    Article  CAS  Google Scholar 

  12. V. L. Stolyarova, S. I. Lopatin, S. M. Shugurov, et al., Russ. J. Gen. Chem. 80, 689 (2010). https://doi.org/10.1134/S1070363210040018

    Article  CAS  Google Scholar 

  13. V. L. Stolyarova, S. I. Lopatin, S. M. Shugurov, et al., Russ. J. Gen. Chem. 80, 2405 (2010). https://doi.org/10.1134/S1070363210120029

    Article  CAS  Google Scholar 

  14. V. L. Stolyarova, S. I. Lopatin, and A. L. Shilov, Russ. J. Gen. Chem. 79, 1778 (2009). https://doi.org/10.1134/S1070363209090035

    Article  CAS  Google Scholar 

  15. V. L. Stolyarova and A. L. Shilov, J. Non-Cryst. Solids 366, 6 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.01.036

    Article  CAS  Google Scholar 

  16. V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, et al., Rapid Comm. Mass. Spectrom. 28, 801 (2014). https://doi.org/10.1002/rcm.6842

    Article  CAS  Google Scholar 

  17. V. L. Stolyarova, S. I. Lopatin, S. M. Shugurov, et al., in Proceedings of the XIV Russian Conference with International Participation on Thermophysical Properties of Substances (RKTS-14), Kazan, Russia, October 15–17, 2014 (KNITU, Kazan, 2014).

  18. V. V. Golubkov, P. A. Onushchenko, and V. L. Stolyarova, Glass Phys. Chem. 41, 247 (2015). https://doi.org/10.1134/S1087659615030074

    Article  CAS  Google Scholar 

  19. V. V. Golubkov, P. A. Onushchenko, and V. L. Stolyarova, Glass Phys. Chem. 39, 624 (2013). https://doi.org/10.1134/S1087659613060059

    Article  CAS  Google Scholar 

  20. V. V. Golubkov and V. L. Stolyarova, Glass Phys. Chem. 37, 252 (2011). https://doi.org/10.1134/S1087659611030047

    Article  CAS  Google Scholar 

  21. V. V. Golubkov and V. L. Stolyarova, Glass Phys. Chem. 32, 287 (2006). https://doi.org/10.1134/S1087659606030059

    Article  CAS  Google Scholar 

  22. A. L. Shilov, S. V. Stolyar, V. L. Stolyarova, et al., Glass Technol.: Eur. J. Glass Sci. Technol. A 60, 105 (2019). https://doi.org/10.13036/17533546.60.4.016

    Article  Google Scholar 

  23. A. L. Shilov, S. I. Lopatin, V. L. Stolyarova, et al., JALCOM 791, 1207 (2019). https://doi.org/10.1016/j.jallcom.2019.03.182

    Article  CAS  Google Scholar 

  24. V. A. Vorozhtcov, A. L. Shilov, and V. L. Stolyarova, Russ. J. Gen. Chem. 89, 475 (2019). https://doi.org/10.1134/S1070363219030186

    Article  CAS  Google Scholar 

  25. A. L. Shilov, V. L. Stolyarova, V. A. Vorozhtcov, et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 65, 165 (2019). https://doi.org/10.1016/j.calphad.2019.03.001

    Article  CAS  Google Scholar 

  26. E. N. Kablov, V. L. Stolyarova, S. I. Lopatin, et al., Rapid Comm. Mass. Spectrom. 31, 538 (2017). https://doi.org/10.1002/rcm.7809

    Article  CAS  Google Scholar 

  27. E. N. Kablov, V. L. Stolyarova, S. I. Lopatin, et al., Rapid Comm. Mass. Spectrom. 31, 1137 (2017). https://doi.org/10.1002/rcm.7892

    Article  CAS  Google Scholar 

  28. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., Rapid Comm. Mass. Spectrom. 32, 686 (2018). https://doi.org/10.1002/rcm.8081

    Article  CAS  Google Scholar 

  29. A. N. Belov and G. A. Semenov, Zh. Fiz. Khim. 59, 589 (1985).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Shilov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, A.L., Stolyarova, V.L., Vorozhtcov, V.A. et al. Optimization of the Thermodynamic Properties of the Sm2O3–Y2O3–HfO2 System at High Temperatures by the Barker Method. Russ. J. Inorg. Chem. 65, 773–780 (2020). https://doi.org/10.1134/S0036023620050216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050216

Keywords:

Navigation