Skip to main content
Log in

Heat Capacity and Thermodynamic Functions of Dysprosium Orthoniobate in the Range 2–1300 K

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The heat capacity of polycrystalline dysprosium orthoniobate was studied over a wide temperature range by three calorimetric methods: relaxation calorimetry (2–50 K), adiabatic calorimetry (9–350 K), and differential scanning calorimetry (308–1300 K). Below 9 K a descending low-temperature anomaly branch was detected, whose peak is beyond the measurement limits. At 1086 K a reversible phase transition occurs. The behavior of heat capacity and \(C_{p}^{^\circ }(T)\) in the phase-transition region implies that this is a second-order phase transition. The data gained were used to calculate temperature-dependent standard thermodynamic functions of DyNbO4 over the whole measurement range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. Li, Y. Zhang, X. Li, et al., Phys. Chem. Chem. Phys. 17, 4283 (2015). https://doi.org/10.1039/c4cp03894k

    Article  CAS  PubMed  Google Scholar 

  2. M. Hirano and H. Dozono, J. Am. Ceram. Soc. 96, 3389 (2013). https://doi.org/10.1111/jace.12595

    Article  CAS  Google Scholar 

  3. Y. Cao, N. Duan, D. Yan, et al., Int. J. Hydrogen En. 41, 20633 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.056

    Article  CAS  Google Scholar 

  4. T. Norby and A. Magraso, et al., J. Power Sources 282, 28 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.027

    Article  CAS  Google Scholar 

  5. R. Haugsrud and T. Norby, et al., Nat. Mater. 5, 193 (2006). https://doi.org/10.1038/nmat1591

    Article  CAS  Google Scholar 

  6. C. Balamurugan, D. -W. Lee, A. Subramania, et al., Appl. Surf. Sci. 283, 58 (2013).

    Article  CAS  Google Scholar 

  7. D.-W. Kim, D.-K. Kwon, S. H. Yoon, et al., J. Am. Ceram. Soc. 89, 3861 (2006). https://doi.org/10.1111/j.1551-2916.2006.01302.x

    Article  CAS  Google Scholar 

  8. H. W. Lee, J. H. Park, S. Nahm, et al., Mater. Res. Bull. 45, 21 (2010). https://doi.org/10.1016/j.materresbull.2009.09.008

    Article  CAS  Google Scholar 

  9. G. Nikiforova, A. Khoroshilov, A. Tyurin, et al., J. Chem. Thermodyn. 132, 44 (2019). https://doi.org/10.1016/j.jct.2018.12.041

    Article  CAS  Google Scholar 

  10. O. N. Kondrat’eva, G. E. Nikiforova, A. V. Tyurin, et al., J. Alloys Compd. 779, 660 (2019). https://doi.org/10.1016/j.jallcom.2018.11.272

    Article  CAS  Google Scholar 

  11. G. E. Nikiforova, A. V. Khoroshilov, K. S. Gavrichev, et al., Appl. Solid State Chem. 2, 159 (2018). https://doi.org/10.18572/2619-0141-2018-4-5-159-162

    Article  Google Scholar 

  12. G. E. Nikiforova, A. V. Khoroshilov, K. S. Gavrichev, et al., Inorg. Mater. 55, 964 (2019). https://doi.org/10.1134/S0002337X19090082

    Article  CAS  Google Scholar 

  13. S. W. Arulnesan, P. Kayser, J. A. Kimpton, et al., J. Solid State Chem. 277, 229 (2019). https://doi.org/10.1016/j.jssc.2019.06.014

    Article  CAS  Google Scholar 

  14. P. Sarin, R. W. Hughes, D. R. Lowry, et al., J. Am. Ceram. Soc. 97, 3307 (2014). https://doi.org/10.1111/jace.13095

    Article  CAS  Google Scholar 

  15. L. Jian and C. Wayman, J. Am. Ceram. Soc. 80, 803 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02905.x

    Article  CAS  Google Scholar 

  16. L. L. Kukueva, L. A. Ivanova, and Yu. N. Venevtsev, Ferroelectrics 55, 129 (1984). https://doi.org/10.1080/00150198408015351

    Article  Google Scholar 

  17. C. Keller, Z. Anorg. Allg. Chem. 318, 89 (1962). https://doi.org/10.1002/zaac.19623180108

    Article  CAS  Google Scholar 

  18. K. S. Gavrichev, M. A. Ryumin, V. M. Gurevich, et al., Inorg. Mater. 50, 917 (2014). https://doi.org/10.1134/S0020168514090039

    Article  CAS  Google Scholar 

  19. J. Filippi, J. C. Lasjaunias, A. Ravex, et al., Solid State Commun. 23, 613 (1977). https://doi.org/10.1016/0038-1098(77)90531-2

    Article  CAS  Google Scholar 

  20. V. M. Gurevich, V. E. Gorbunov, K. S. Gavrichev, et al., Geochem. Int. 37, 367 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Shared Facilities Center of the Kurnakov Institute was used in the frame of the Governmental assignment to the Kurnakov Institute in the field of fundamental research.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-03-00343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Nikiforova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, G.E., Tyurin, A.V., Ryumin, M.A. et al. Heat Capacity and Thermodynamic Functions of Dysprosium Orthoniobate in the Range 2–1300 K. Russ. J. Inorg. Chem. 65, 688–694 (2020). https://doi.org/10.1134/S0036023620050186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050186

Keywords:

Navigation