Skip to main content
Log in

Thermodynamic Properties of Phases and Phase Equilibria in the H2O–HNO3–UO2(NO3)2–Th(NO3)4 System

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A set of Pitzer parameters was obtained to accurately describe the thermodynamic properties of solutions in the H2O–UO2(NO3)2–Th(NO3)4–HNO3 system at 25°С and represent the thermodynamic properties of liquid phases in the H2O–Th(NO3)4–HNO3 subsystem in the temperature range 25–50°С. Solubility products were calculated for crystal hydrates Th(NO3)4 · 6H2O and UO2(NO3)2 · 3H2O to predict the solubilities of these compounds in those solutions over a wide concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Nascimento, J. Moreira, and L. Cardoso, Rev. Caatinga 30, 213 (2017). https://doi.org/10.1590/1983-21252017v30n123rc

    Article  Google Scholar 

  2. A. S. Maliutin, N. A. Kovalenko, and I. A. Uspenskaya, Moscow Univ. Chem. Bull. 75, 65 (2020). https://doi.org/10.3103/S0027131420020091

  3. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973). https://doi.org/10.1021/j100621a026

    Article  CAS  Google Scholar 

  4. K. S. Pitzer, P. Wang, and J. Rard, J. Solution Chem. 28, 265 (1999). https://doi.org/10.1023/A:1022695525943

    Article  CAS  Google Scholar 

  5. A. L. Voskov, N. A. Kovalenko, and I. B. Kutsenok, Russ. J. Phys. Chem. A 93, 1849 (2019). https://doi.org/10.1134/S0036024419100327

    Article  CAS  Google Scholar 

  6. R. A. Robinson and B. J. Levien, Trans. Proc. R. Soc. New Zeal. 76, 295 (1946).

  7. R. J. Lemire, N. H. Sagert, and D. W. P. Lau, J. Chem. Eng. Data 29, 329 (1984). https://doi.org/10.1021/je00037a031

    Article  CAS  Google Scholar 

  8. A. Apelblat, D. Azoulay, and A. Sahar, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 69, 1624 (1973). https://doi.org/10.1039/f19736901624

    Article  CAS  Google Scholar 

  9. W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. Soc. 73, 4991 (1951). https://doi.org/10.1021/ja01154a531

    Article  CAS  Google Scholar 

  10. A. Apelblat, D. Azoulay, and A. Sahar, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 69, 1618 (1973). https://doi.org/10.1039/f19736901618

    Article  CAS  Google Scholar 

  11. R. J. Lemire and C. P. Brown, J. Solution Chem. 11, 203 (1982). https://doi.org/10.1007/BF00667602

    Article  CAS  Google Scholar 

  12. R. J. Lemire, C. P. Brown, and A. B. Campbell, J. Chem. Eng. Data 30, 421 (1985). https://doi.org/10.1021/je00042a015

    Article  CAS  Google Scholar 

  13. J. R. Ferraro, L. I. Katzin, and G. Gibson, J. Am. Chem. Soc. 76, 909 (1954). https://doi.org/10.1021/ja01632a083

    Article  CAS  Google Scholar 

  14. V. I. Volk, A. Yu. Vakhrushin, and S. L. Mamaev, Radiochemistry 41, 222 (1999).

    CAS  Google Scholar 

  15. E. Lange and W. Miederer, Ber. Bunsen-Ges. Phys. Chem. 61, 407 (1957). https://doi.org/10.1002/bbpc.19570610317

    Article  CAS  Google Scholar 

  16. A. Apelblat and A. Sahar, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 71, 1667 (1975). https://doi.org/10.1039/f19757101667

    Article  CAS  Google Scholar 

  17. V. I. Volk, A. Yu. Vakhrushin, and S. L. Mamaev, J. Radioanal. Nucl. Chem. 243, 703 (2000). https://doi.org/10.1023/A:1006764417407

    Article  Google Scholar 

  18. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973). https://doi.org/10.1021/j100638a009

    Article  CAS  Google Scholar 

  19. H. T. Kim and W. J. Frederick, J. Chem. Eng. Data 33, 177 (1988). https://doi.org/10.1021/je00052a035

    Article  CAS  Google Scholar 

  20. M. Simoes, K. Hughes, and D. Ingham, J. Chem. Eng. Data 61, 2536 (2016). https://doi.org/10.1021/acs.jced.6b00236

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-24167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Malyutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyutin, A.S., Kovalenko, N.A. & Uspenskaya, I.A. Thermodynamic Properties of Phases and Phase Equilibria in the H2O–HNO3–UO2(NO3)2–Th(NO3)4 System. Russ. J. Inorg. Chem. 65, 781–786 (2020). https://doi.org/10.1134/S0036023620050149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050149

Keywords:

Navigation