Skip to main content
Log in

Flow on the surface of sloped rotating cylinder

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Viscous flow of fluid film on outer surface of a sloped rotating cylinder in gravitational field is studied. Thickness of the fluid layer is assumed to be small compared to the cylinder radius, which allows asymptotic analysis. Governing equation for the thickness dynamics is derived. The equation accounts for viscous effects, gravity, centrifugal and capillary forces. A criterion for existence of steady flow on the sloped cylinder is obtained. Linear stability of stationary solution for the vertical cylinder is given. Film thickness response to oscillations of the cylinder axis around vertical line is studied. Numerical model is implemented for the case of arbitrary slope angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  Google Scholar 

  2. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)

    Article  Google Scholar 

  3. Van De Fliert, B.W., Howell, P.D., Ockenden, J.R.: Pressure-driven flow of a thin viscous sheet. J. Fluid Mech. 292, 359–376 (1995)

    Article  MathSciNet  Google Scholar 

  4. Roy, R.V., Roberts, A.J., Simpson, M.E.: A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235–261 (2002)

    Article  MathSciNet  Google Scholar 

  5. Roberts, A.J., Li, Zh: An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. J. Fluid Mech. 553, 33–73 (2006)

    Article  MathSciNet  Google Scholar 

  6. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  Google Scholar 

  7. Haragus, M., Iooss G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Universitext. Springer, London (2011)

  8. Moffatt, H.K.: Behaviour of a viscous film on the outer surface of a rotating cylinder. J. de Mecanique. 16(5), 651–673 (1977)

    MATH  Google Scholar 

  9. Pukhnachev, V.V.: Flow of fluid film on the surface of rotating cylinder in gravity field. Appl. Mech. Techn. Phys. No 3, 78–88 (1977)

    Google Scholar 

  10. Benilov, E.S., Lapin, V.N.: Inertial instability of flows on the inside or outside of a rotating horizontal cylinder. J. Fluid Mech. 736, 107–129 (2013)

    Article  MathSciNet  Google Scholar 

  11. Groh, C.M., Kelmanson, M.A.: Inertially induced cyclic solutions in thin-film free-surface flows. J. Fluid Mech. 755, 628–653 (2014)

    Article  MathSciNet  Google Scholar 

  12. Aggarwal, H., Tiwari, N.: Generalized linear stability of non-inertial rimming flow in a rotating horizontal cylinder. Eur. Phys. J. Eng. 38(10), 111 (2015)

    Google Scholar 

  13. Li, W., Kumar, S.: Three-dimensional surfactant-covered flows of thin liquid films on rotating cylinders. J. Fluid Mech. 844, 61–91 (2018)

    Article  MathSciNet  Google Scholar 

  14. Weidner, D.E.: Drop formation in a magnetic fluid coating a horizontal cylinder carrying an axial electric current. Phys. Fluids. 29(5), 052103 (2017)

    Article  Google Scholar 

  15. Evans, P.L., Schwartz, L.W., Roy, R.V.: Steady and unsteady solutions for coating flow on a rotating horizontal cylinder: two-dimensional theoretical and numerical modeling. Phys. Fluids 16(8), 2742–2756 (2004)

    Article  MathSciNet  Google Scholar 

  16. Evans, P.L., Schwartz, L.W., Roy, R.V.: Three-dimensional solutions for coating flow on a rotating horizontal cylinder: theory and experiment. Phys. Fluids. 17(7), 072102 (2005)

    Article  Google Scholar 

  17. Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2(06), 554 (1957)

    Article  MathSciNet  Google Scholar 

  18. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45(1–4), 150–155 (1966)

    Article  MathSciNet  Google Scholar 

  19. Joo, S.W., Davis, S.H.: Instabilities of three-dimensional viscous falling films. J. Fluid Mech. 242, 529 (1992)

    Article  Google Scholar 

  20. Jeffreys, H.: The draining of a vertical plate. Math. Proc. Camb. Philos. Soc. 26(02), 204 (1930)

    Article  Google Scholar 

  21. Frenkel, A.L.: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. Europhys. Lett. (EPL) 18(7), 583–588 (1992)

    Article  Google Scholar 

  22. Frenkel, A.L.: On evolution equations for thin films flowing down solid surfaces. Phys. Fluids A: Fluid Dyn. 5(10), 2342–2347 (1993)

    Article  MathSciNet  Google Scholar 

  23. Mayo, L.C., McCue, S.W., Moroney, T.J.: Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder. Phys. Rev. E. 87, 053018 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation (Grant 08-08), by Grant 16-11-10330 of Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Y. Popov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melikhov, I.F., Chivilikhin, S.A. & Popov, I.Y. Flow on the surface of sloped rotating cylinder. Z. Angew. Math. Phys. 71, 101 (2020). https://doi.org/10.1007/s00033-020-01323-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01323-7

Keywords

Mathematics Subject Classification

Navigation