Skip to main content
Log in

Production and investigation of the physico-chemical properties of MEL-A from glycerol and coconut water

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This work reports the production of MEL-A using coconut water as the carbon source. Proximate analysis of coconut water indicated the presence of nutrients necessary for growth of the organism and production of desired metabolite. The amount of MEL produced using coconut water was 3.85 g/L (± 0.35) with 74% of it being MEL-A when compared to 2.58 g/L (± 0.15) with 60% being MEL-A using glycerol, a conventional carbon source. MEL-A from coconut water consisted of 38.1% long-chain saturated fatty acids (C16:0 and C18:0) whereas with glycerol it was 9.6%. The critical micellar concentration of the biosurfactant from coconut water was 2.32 ± 0.21 µM when compared to 4.41 ± 0.25 µM from glycerol. The stability of O/W emulsion was reduced by 50% and 90% after incubation for 8 h in the case of MEL-A from coconut water and glycerol respectively when compared to synthetic surfactant, Tween-20. MEL-A from both the sources exhibited free radical scavenging activity (DPPH assay) in a dose-dependent manner wherein MEL-A from coconut water showed two fold higher activity than the other. The interaction of coconut water MEL-A with DPPC for drug encapsulation applications was also studied. The DSC measurements showed the differences in the interaction of drugs with DPPC/MEL-A liposome. The differences were also observed in the solubility of drugs after encapsulation with DPPC/MEL-A liposome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelkader H, Fathalla Z (2018) Investigation into the emerging role of the basic amino acid L-lysine in enhancing solubility and permeability of BCS class II and BCS Class IV. Drugs Pharm Res 35:160

    Article  PubMed  CAS  Google Scholar 

  • Appaiah P, Sunil L, Kumar PKP, Krishna AGG (2017) Physico-chemical characteristics and stability aspects of coconut water and kernel at different stages of maturity. J Food Sci Technol 52:5196–5203

    Article  CAS  Google Scholar 

  • Arutchelvi BS, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biot 35:1559–1570

    Article  CAS  Google Scholar 

  • Arutchelvi J, Doble M (2010) Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum contaminated soil. Lett Appl Microbiol 51:75–82

    CAS  PubMed  Google Scholar 

  • Arutchelvi J, Doble M (2011) Mannosylerythritol lipids: microbial production and their applications. In: Soberon Chavez G (ed) Biosurfactants: from genes to applications, vol 20. Springer, Berlin Heidelberg, pp 145–177

    Chapter  Google Scholar 

  • Banat IM et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biot 87:427–444

    Article  CAS  Google Scholar 

  • Benesch MGK, McElhaney RN (2016) A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 195:21–33

    Article  CAS  PubMed  Google Scholar 

  • Bhangale A, Wadekar S, Kale S, Pratap A (2013) Optimization and monitoring of water soluble substrate for synthesis of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657). Biotechnol Bioprocess Eng 18:679–685

    Article  CAS  Google Scholar 

  • Cappelletti M et al (2015) High pressure carbon dioxide pasteurization of coconut water: a sport drink with high nutritional and sensory quality. J Food Eng 145:73–81

    Article  CAS  Google Scholar 

  • De Andrade CJ, De Andrade LM, Rocco SA, Sforca ML, Pastore GuM, Jauregi P (2017) A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep Purif Technol 180:157–167

    Article  CAS  Google Scholar 

  • Dziegielewska E, Adamczak M (2013) Evaluation of waste products in the synthesis of surfactants by yeasts. Chem Pap 67:1113–1122

    Article  CAS  Google Scholar 

  • Faria NT, Marques S, Fonseca C, Ferreira FC (2015) Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048 T Enzyme. Microb Technol 71:58–65

    Article  CAS  Google Scholar 

  • Fracchia L et al (2014) Industrial applications of biosurfactants. In: Naim Kosaric FVS (ed) Biosurfactants: production and utilization—processes technologies and economics. CRC Press, Boca Raton, Florida, pp 245–260

    Chapter  Google Scholar 

  • Giri SS, Venkatachalam S, Sen SS, Park SC (2018) Use of a potential probiotic, Lactobacillus casei L4, in the preparation of fermented coconut water beverage. Front Microbiol 9:1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of antarctic yeasts. Mycologia 61:748–774

    Article  CAS  PubMed  Google Scholar 

  • Grela E et al (2018) Mechanism of binding of antifungal antibiotic amphotericin B to lipid membranes: an insight from combined single-membrane imaging, microspectroscopy, and molecular dynamics. Mol Pharm 15:4202–4213

    Article  CAS  PubMed  Google Scholar 

  • Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2010) The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection. Int J Pharm 398:225–230

    Article  CAS  PubMed  Google Scholar 

  • Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2004) Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Controllled Release 94:423–431

    Article  CAS  Google Scholar 

  • Jackson JC, Gordon A, Wizzard G, McCook K, Rolle R (2004) Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit. J Sci Food Agric 84:1049–1052

    Article  CAS  Google Scholar 

  • Kantachote D, Ratanaburee A, Hayisama-ae W, Sukhoom A, Nunkaew T (2017) The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J Funct Foods 32:401–408

    Article  CAS  Google Scholar 

  • Kim H-S, Jeon J-W, Kim S-B, Oh H-M, Kwon T-J, Yoon B-D (2002) Surface and physico-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol Lett 24:1637–1641

    Article  CAS  Google Scholar 

  • Kim MK, Jeong ES, Kim KN, Park SH, Kim JW (2014) Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid. Colloids Surf B 116:597–602

    Article  CAS  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46

    Article  CAS  PubMed  Google Scholar 

  • Laguerre ML et al (2010) Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem 58:2869–2876

    Article  CAS  PubMed  Google Scholar 

  • Law SV, Abu Bakar F, Mat Hashim D, Abdul Hamid A (2011) Popular fermented foods and beverages in Southeast Asia. Int Food Res J 18:475–484

    Google Scholar 

  • Madihalli C, Sudhakar H, Doble M (2016) Mannosylerythritol lipid-A as a pour point depressant for enhancing the low-temperature fluidity of biodiesel and hydrocarbon fuels. Energy Fuels 30:4118–4125

    Article  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007a) Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317 T. J Biosci Bioeng 104:78–81

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007b) Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl Microbiol Biotechnol 74:307–315

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng 105:493–502. https://doi.org/10.1263/jbb.105.493

    Article  CAS  PubMed  Google Scholar 

  • Morita T et al (2009) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol 83:1017

    Article  CAS  PubMed  Google Scholar 

  • Morita T et al (2011) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 75:1371–1376

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013a) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700

    Article  CAS  PubMed  Google Scholar 

  • Morita T et al (2013b) Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96. J Oleo Sci 62:319–327

    Article  CAS  PubMed  Google Scholar 

  • Nair AV, Gummadi SN, Doble M (2014) Characterization and biological activities of cyclic b-(1,2)-glucan from Bradyrhizobium japonicum. Biotechnol Lett 38:1519–1525

    Article  CAS  Google Scholar 

  • Nankar RP, Doble M (2015) Ellagic acid potentiates insulin sensitising activity of pioglitazone in L6 myotubes. J Funct Foods 15:1–10

    Article  CAS  Google Scholar 

  • Neunert G, Tomaszewska-Gras J, Siejak P, Pietralik Z, Kozak M, Polewski K (2019) Disruptive effect of tocopherol oxalate on DPPC liposome structure: DSC, SAXS, and fluorescence anisotropy studies. Chem Phys Lipids 216:104–113

    Article  CAS  Google Scholar 

  • Ortiz-Collazos S, Estrada-Lopez ED, Pedreira AA, Picciani PHS, Oliveira ON Jr, Pimentel AS (2017) Interaction of levofloxacin with lung surfactant at the air-water interface. Colloids Surf B 158:689–696

    Article  CAS  Google Scholar 

  • Philp J, Kuyukina M, Ivshina I, Dunbar S, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran G, Hoti SL, Manonmani AM, Balaraman K (2008) Coconut water as a cheap source for the production of delta-endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta Trop 105:35–38

    Article  CAS  PubMed  Google Scholar 

  • Prades A, Dornier M, Diop N, Pain J-P (2012) Coconut water uses, composition and properties: a review. Fruits 67:87–107

    Article  CAS  Google Scholar 

  • Raman M, Doble M (2014) Physicochemical and structural characterisation of marine algae Kappaphycus alvarezii and the ability of its dietary fibres to bind mutagenic amines. J Appl Phycol 26:2183–2191

    Article  CAS  Google Scholar 

  • Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 449:304–316

    Article  CAS  PubMed  Google Scholar 

  • Saika A, Koike H, Fukuoka T, Morita T (2018) Tailor-made mannosylerythritol lipids: current state and perspectives. Appl Microbiol Biotechnol 102:1–8

    Article  CAS  Google Scholar 

  • Salum A et al (2018) Individual and combined effects of the extractant, surfactant and modifier concentrations on the droplet coalescence time of the primary emulsion in the liquid surfactant membrane extraction process. Adv Chem Eng Sci 8:205

    Article  CAS  Google Scholar 

  • Sekar N, Veetil SK, Neerathilingam M (2013) Tender coconut water an economical growth medium for the production of recombinant proteins in Escherichia coli. BMC Biotechnol 13:1

    Article  CAS  Google Scholar 

  • Severa G, Edwards M, Cooney MJ (2017) Bio-oil extraction of Jatropha curcas with ionic liquid co-solvent: fate of biomass protein. Bioresour Technol 226:255–261

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Lin AH-M (2018) Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem 240:898–903

    Article  CAS  PubMed  Google Scholar 

  • Szczes A (2013) Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate. Colloids Surf B 101:44–48

    Article  CAS  Google Scholar 

  • Tanimura A et al (2016) Lipid production through simultaneous utilization of glucose, xylose, and l-arabinose by Pseudozyma hubeiensis: a comparative screening study. AMB Express 6:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worakitkanchanakul W et al (2009) Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids Surf B 68:207–212

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M et al (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang Y, Deng J, Wang Y, Hu Q, Li C, Liu S (2017) Dynamic profile of the microbiota during coconut water pre-fermentation for nata de coco production. LWT-Food Sci Technol 81:87–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CM acknowledges AICTE, Government of India, New Delhi, for providing the fellowship, BMS College of Engineering, Bengaluru for sponsorship, Centre of excellence, BMSCE, Bengaluru for SEM, Sophisticated analytical instrument facility, IIT Madras for NMR and Prof. Anju Chadha, Department of Biotechnology, IIT Madras for analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madihalli, C., Sudhakar, H. & Doble, M. Production and investigation of the physico-chemical properties of MEL-A from glycerol and coconut water. World J Microbiol Biotechnol 36, 88 (2020). https://doi.org/10.1007/s11274-020-02857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02857-8

Keywords

Navigation