Skip to main content
Log in

PdCu Single Atom Alloys for the Selective Oxidation of Methanol to Methyl Formate at Low Temperatures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The selective catalytic oxidation of methanol to methyl formate (MF) has been considered as an attractive route to produce MF, an important precursor in the chemical industry. Although supported Pd nanoparticles are active for the selective oxidation of methanol to MF, the relatively low MF selectivity and yield remains an unsolved issue. Herein, we show that adding a small amount of Pd into Cu forming PdCu single atom alloy (SAA) catalysts can catalyze the oxidation of methanol to MF selectively at low temperatures, with a high catalyst stability. The atomic dispersion of Pd atoms in the Cu matrix was confirmed by various in-situ characterization techniques. The activity and selectivity of PdCu SAA catalysts were compared to monometallic Cu and Pd catalysts, in a flow reactor at similar conditions. This work may guide the design of new SAA based catalysts for selective oxidation reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ullmann F, Bohnet M (2009) Ullmann's encyclopedia of industrial chemistry. Wiley, New York

    Google Scholar 

  2. Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    CAS  PubMed  Google Scholar 

  3. Li W, Liu H, Iglesia E (2006) Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate. J Phys Chem B 110:23337–23342

    CAS  PubMed  Google Scholar 

  4. Lee JS, Kim JC, Kim YG (1990) Methyl formate as a new building block in C1 chemistry. Appl Catal 57:1–30

    CAS  Google Scholar 

  5. Gérard E, Götz H, Pellegrini S, Castanet Y, Mortreux A (1998) Epoxide–tertiary amine combinations as efficient catalysts for methanol carbonylation into methyl formate in the presence of carbon dioxide. Appl Catal A 170:297–306

    Google Scholar 

  6. He L, Liu H, Xiao C-X, Kou Y (2008) Liquid-phase synthesis of methyl formate via heterogeneous carbonylation of methanol over a soluble copper nanocluster catalyst. Green Chem 10:619

    CAS  Google Scholar 

  7. Whiting GT, Kondrat SA, Hammond C, Dimitratos N, He Q, Morgan DJ, Dummer NF, Bartley JK, Kiely CJ, Taylor SH, Hutchings GJ (2014) Methyl formate formation from methanol oxidation using supported gold–palladium nanoparticles. Acs Catal 5:637–644

    Google Scholar 

  8. Cao S, Yang M, Elnabawy AO, Trimpalis A, Li S, Wang C, Göltl F, Chen Z, Liu J, Shan J, Li M, Haas T, Chapman KW, Lee S, Allard LF, Mavrikakis M, Flytzani-Stephanopoulos M (2019) Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat Chem 11:1098–1105

    CAS  PubMed  Google Scholar 

  9. Li C, Yang X, Gao G, Li Y, Zhang W, Chen X, Su H, Wang S, Wang Z (2019) Copper on the inner surface of mesoporous TiO2 hollow spheres: a highly selective photocatalyst for partial oxidation of methanol to methyl formate. Catal Sci Technol 9:6240–6252

    CAS  Google Scholar 

  10. Zhang Q, Zhu C, Yang G, Sun Y, Wang D, Liu J (2019) High-performance microstructured Au–Ag bimetallic catalyst for oxidative coupling of methanol to methyl formate. Catal Commun 129:105741

    CAS  Google Scholar 

  11. Yu H, Zeng K, Fu X, Zhang Y, Peng F, Wang H, Yang J (2008) RuO2·xH2O Supported on carbon nanotubes as a highly active catalyst for methanol oxidation. J Phys Chem C 112:11875–11880

    CAS  Google Scholar 

  12. Huang H, Li W, Liu H (2012) Effect of treatment temperature on structures and properties of zirconia-supported ruthenium oxide catalysts for selective oxidation of methanol to methyl formate. Catal Today 183:58–64

    CAS  Google Scholar 

  13. Liu Z, Zhang R, Wang S, Li N, Sima R, Liu G, Wu P, Zeng G, Li S, Sun Y (2016) Highly efficient and stable vanadia–titania–sulfate catalysts for methanol oxidation to methyl formate: synthesis and mechanistic study. J Phys Chem C 120:6591–6600

    CAS  Google Scholar 

  14. Liu J, Zhan E, Cai W, Li J, Shen W (2007) Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts. Catal Lett 120:274–280

    Google Scholar 

  15. Li N, Wang S, Sun Y, Li S (2017) First principles studies on the selectivity of dimethoxymethane and methyl formate in methanol oxidation over V2O5/TiO2-based catalysts. Phys Chem Chem Phys 19:19393–19406

    CAS  PubMed  Google Scholar 

  16. Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Zemlyanov DY, Beloshapkin SA, Knop-Gericke A, Schlögl R, Andrushkevich TV, Bukhtiyarov VI (2014) Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J Catal 311:59–70

    CAS  Google Scholar 

  17. Wojcieszak R, Karelovic A, Gaigneaux EM, Ruiz P (2014) Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature. Catal Sci Technol 4:3298–3305

    CAS  Google Scholar 

  18. Yang Z, Li J, Yang X, Wu Y (2005) Catalytic oxidation of methanol to methyl formate over silver? a new purpose of a traditional catalysis system. Catal Lett 100:205–211

    CAS  Google Scholar 

  19. Han C, Yang X, Gao G, Wang J, Lu H, Liu J, Tong M, Liang X (2014) Selective oxidation of methanol to methyl formate on catalysts of Au–Ag alloy nanoparticles supported on titania under UV irradiation. Green Chem 16:3603–3615

    CAS  Google Scholar 

  20. Wang R, Wu Z, Chen C, Qin Z, Zhu H, Wang G, Wang H, Wu C, Dong W, Fan W, Wang J (2013) Graphene-supported Au–Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chem Commun 49:8250

    CAS  Google Scholar 

  21. Wojcieszak R, Gaigneaux EM, Ruiz P (2013) Direct methyl formate formation from methanol over supported palladium nanoparticles at low temperature. Chemcatchem 5:339–348

    CAS  Google Scholar 

  22. Wu J-B, Shi R-P, Qin Z-F, Liu H, Li Z-K, Zhu H-Q, Zhao Y-X, Wang J-G (2019) Selective oxidation of methanol to methyl formate over bimetallic Au–Pd nanoparticles supported on SiO2. J Fuel Chem Technol 47:780–790

    CAS  Google Scholar 

  23. Wang L-C, Personick ML, Karakalos S, Fushimi R, Friend CM, Madix RJ (2016) Active sites for methanol partial oxidation on nanoporous gold catalysts. J Catal 344:778–783

    CAS  Google Scholar 

  24. Xu B, Siler CGF, Madix RJ, Friend CM (2014) Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface. Chem Eur J 20:4646–4652

    CAS  PubMed  Google Scholar 

  25. Flytzani-Stephanopoulos M, Gates BC (2012) Atomically dispersed supported metal catalysts. Ann Rev Chem Biomol Eng 3:545–574

    CAS  Google Scholar 

  26. Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748

    CAS  PubMed  Google Scholar 

  27. Liu JY (2017) Catalysis by Supported Single Metal Atoms. Acs Catal 7:34–59

    CAS  Google Scholar 

  28. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209–1212

    CAS  PubMed  Google Scholar 

  29. Boucher MB, Zugic B, Cladaras G, Kammert J, Marcinkowski MD, Lawton TJ, Sykes ECH, Flytzani-Stephanopoulos M (2013) Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys Chem Chem Phys 15:12187–12196

    CAS  PubMed  Google Scholar 

  30. Lucci FR, Liu JL, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat Commun 6:1–8

    Google Scholar 

  31. Liu JL, Lucci FR, Yang M, Lee S, Marcinkowski MD, Therrien AJ, Williams CT, Sykes ECH, Flytzani-Stephanopoulos M (2016) Tackling CO poisoning with single-atom alloy catalysts. J Am Chem Soc 138:6396–6399

    CAS  PubMed  Google Scholar 

  32. Shan J, Lucci FR, Liu J, El-Soda M, Marcinkowski MD, Allard LF, Sykes ECH, Flytzani-Stephanopoulos M (2016) Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surf Sci 650:121–129

    CAS  Google Scholar 

  33. Liu J, Shan J, Lucci FR, Cao S, Sykes ECH, Flytzani-Stephanopoulos M (2017) Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catal Sci Technol 7:4276–4284

    CAS  Google Scholar 

  34. Shan J, Janvelyan N, Li H, Liu J, Egle TM, Ye J, Biener MM, Biener J, Friend CM, Flytzani-Stephanopoulos M (2017) Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys. Appl Catal B 205:541–550

    CAS  Google Scholar 

  35. Shan J, Liu J, Li M, Lustig S, Lee S, Flytzani-Stephanopoulos M (2018) NiCu single atom alloys catalyze the C H bond activation in the selective non- oxidative ethanol dehydrogenation reaction. Appl Catal B 226:534–543

    CAS  Google Scholar 

  36. Marcinkowski MD, Darby MT, Liu J, Wimble JM, Lucci FR, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH (2018) Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat Chem 10:325–332

    CAS  PubMed  Google Scholar 

  37. Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH (2018) Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc Chem Res 52:237–247

    PubMed  Google Scholar 

  38. Podborska A, Wojnicki M (2017) Spectroscopic and theoretical analysis of Pd2+−Cl−−H2O system. J Mol Struct 1128:117–122

    CAS  Google Scholar 

  39. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    CAS  Google Scholar 

  40. Subramanian ND, Kumar CSSR, Watanabe K, Fischer P, Tanaka R, Spivey JJ (2012) A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles. Catal Sci Technol 2:621–631

    CAS  Google Scholar 

  41. Shan S, Petkov V, Prasai B, Wu J, Joseph P, Skeete Z, Kim E, Mott D, Malis O, Luo J, Zhong C-J (2015) Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale 7:18936–18948

    CAS  PubMed  Google Scholar 

  42. Sarkar C, Koley P, Shown I, Lee J, Liao Y-F, An K, Tardio J, Nakka L, Chen K-H, Mondal J (2019) Integration of interfacial and alloy effects to modulate catalytic performance of metal–organic-framework-derived Cu–Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural. ACS Sustain Chem Eng 7:10349–10362

    CAS  Google Scholar 

  43. Olekszyszen DN, Albuquerque BL, Silva DD, Tripodi GL, de Oliveira DC, Domingos JB (2020) Domingos, Core–shell PdCu bimetallic colloidal nanoparticles in Sonogashira cross-coupling reaction: mechanistic insights into the catalyst mode of action. Nanoscale 12:1171–1179

    CAS  PubMed  Google Scholar 

  44. Lucci FR, Zhang L, Thuening T, Uhlman MB, Schilling AC, Henkelman G, Charles E, Sykes H (2018) The effect of single pd atoms on the energetics of recombinative O2 desorption from Au(111). Surf Sci 677:296–300

    CAS  Google Scholar 

  45. Trimpalis A, Giannakakis G, Cao S, Flytzani-Stephanopoulos M (2019) NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate. Catal Today. https://doi.org/10.1016/j.cattod.2019.04.021

    Article  Google Scholar 

  46. Darby MT, Stamatakis M, Michaelides A, Sykes ECH (2018) Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J Phys Chem Lett 9:5636–5646

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award #DESC0012573. The XAS research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science, User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Shan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Research Involving Human Participants and/or Animal Rights

There were no human or animal subjects involved in this research.

Informed Consent

The authors state that the manuscript has not been published or submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, J., Giannakakis, G., Liu, J. et al. PdCu Single Atom Alloys for the Selective Oxidation of Methanol to Methyl Formate at Low Temperatures. Top Catal 63, 618–627 (2020). https://doi.org/10.1007/s11244-020-01288-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01288-x

Keywords

Navigation