Skip to main content
Log in

Friedel oscillations of one-dimensional correlated fermions from perturbation theory and density functional theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the asymptotic decay of the Friedel density oscillations induced by an open boundary in a one-dimensional chain of lattice fermions with a short-range two-particle interaction. From Tomonaga-Luttinger liquid theory it is known that the decay follows a power law, with an interaction dependent exponent, which, for repulsive interactions, is larger than the noninteracting value − 1. We first investigate if this behavior can be captured by many-body perturbation theory for either the Green function or the self-energy in lowest order in the two-particle interaction. The analytic results of the former show a logarithmic divergence indicative of the power law. One might hope that the resummation of higher order terms inherent to the Dyson equation then leads to a power law in the perturbation theory for the self-energy. However, the numerical results do not support this. Next we use density functional theory within the local-density approximation and an exchange-correlation functional derived from the exact Bethe ansatz solution of the translational invariant model. While the numerical results are consistent with power-law scaling if systems of 104 or more lattice sites are considered, the extracted exponent is very close to the noninteracting value even for sizeable interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schönhammer,Interacting Electrons in Low Dimensions, edited by D. Baeriswyl (Kluwer Academic Publishers, Dordrecht, 2005), https://arXiv:cond-mat/0305035

  2. T. Giamarchi,Quantum Physics in One Dimension (Oxford University Press, New York, 2003)

  3. F.D.M. Haldane, J. Phys. C 14, 2585 (1981)

    Article  ADS  Google Scholar 

  4. M. Fabrizio, A.O. Gogolin, Phys. Rev. B 51, 17827 (1995)

    Article  ADS  Google Scholar 

  5. R. Egger, H. Grabert, Phys. Rev. Lett. 75, 3505 (1995)

    Article  ADS  Google Scholar 

  6. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Meden, W. Metzner, U. Schollwöck, O. Schneider, T. Stauber, K. Schönhammer, Eur. Phys. J. B 16, 631 (2000)

    Article  ADS  Google Scholar 

  8. O. Gunnarsson, K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986)

    Article  ADS  Google Scholar 

  9. K. Schönhammer, O. Gunnarsson, R.M. Noack, Phys. Rev. B 52, 2504 (1995)

    Article  ADS  Google Scholar 

  10. N.A. Lima, M.F. Silva, L.N. Oliveira, K. Capelle, Phys. Rev. Lett. 90, 146402 (2003)

    Article  ADS  Google Scholar 

  11. P. Schmitteckert, F. Evers, Phys. Rev. Lett. 100, 086401 (2008)

    Article  ADS  Google Scholar 

  12. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  13. S. Schenk, M. Dzierzawa, P. Schwab, U. Eckern, Phys. Rev. B 78, 165102 (2008)

    Article  ADS  Google Scholar 

  14. A. Luther, I. Peschel, Phys. Rev. B 9, 2911 (1974)

    Article  ADS  Google Scholar 

  15. W. Apel, T.M. Rice, Phys. Rev. B 26, 7063 (1982)

    Article  ADS  Google Scholar 

  16. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992)

    Article  ADS  Google Scholar 

  17. P. Schmitteckert, Phys. Chem. Chem. Phys. 20, 27600 (2018)

    Article  Google Scholar 

  18. S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, Phys. Rev. B 70, 075102 (2004)

    Article  ADS  Google Scholar 

  19. J. Sólyom, Adv. Phys. 28, 201 (1979)

    Article  ADS  Google Scholar 

  20. S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, Phys. Rev. B 73, 045125 (2006)

    Article  ADS  Google Scholar 

  21. S.A. Söffing, I. Schneider, S. Eggert, EPL 101, 56006 (2013)

    Article  ADS  Google Scholar 

  22. N. Kitanine, K.K. Kozlowski, J.M. Maillet, G. Niccoli, N.A. Slavnov, V. Terras, J. Stat. Mech. 2008, P07010 (2008)

    Article  Google Scholar 

  23. C. Karrasch, J.E. Moore, Phys. Rev. B 86, 155156 (2012)

    Article  ADS  Google Scholar 

  24. P. Schmitteckert, U. Eckern, Phys. Rev. B 53, 15397 (1996)

    Article  ADS  Google Scholar 

  25. L.J. Sham, W. Kohn, Phys. Rev. 145, 561 (1966)

    Article  ADS  Google Scholar 

  26. J. Odavić, Ph.D. thesis, RWTH Aachen University, 2019

  27. V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, J. Low Temp. Phys. 126, 1147 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Odavić.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odavić, J., Helbig, N. & Meden, V. Friedel oscillations of one-dimensional correlated fermions from perturbation theory and density functional theory. Eur. Phys. J. B 93, 103 (2020). https://doi.org/10.1140/epjb/e2020-10127-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10127-1

Keywords

Navigation