Skip to main content

Advertisement

Log in

Robust estimation of single index models with responses missing at random

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

A single-index regression model is considered, where some responses in the model are assumed to be missing at random. Local linear rank-based estimators of the single-index direction and the unknown link function are proposed. Asymptotic properties of the estimators are established under mild regularity conditions. Monte Carlo simulation experiments show that the proposed estimators are more efficient than their least squares counterparts especially when the data are derived from contaminated or heavy-tailed model error distributions. When the errors follow a normal distribution, the least squares index direction estimator tends to be more efficient than the rank-based index direction estimator; however, the least squares link function estimator remains less efficient than the rank-based link function estimator. A real data example is analyzed and cross-validation studies show that the proposed procedure provides better prediction than the least squares method when the responses contain outliers and are missing at random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bindele Huybrechts F (2015) The signed-rank estimator for nonlinear regression with responses missing at random. Electron J Stat 9(1):1424–1448

    MathSciNet  MATH  Google Scholar 

  • Bindele Huybrechts F, Abebe A (2012) Bounded influence nonlinear signed-rank regression. Can J Stat 40(1):172–189

    MathSciNet  MATH  Google Scholar 

  • Bindele Huybrechts F, Abebe A (2015) Semi-parametric rank regression with missing responses. J Multivar Anal 142:117–132

    MathSciNet  MATH  Google Scholar 

  • Bindele Huybrechts F, Abebe A, Meyer Karlene N (2018) General rank-based estimation for regression single index models. Ann Inst Stat Math 70(5):1115–1146

    MathSciNet  MATH  Google Scholar 

  • Brunner E, Denker M (1994) Rank statistics under dependent observations and applications to factorial designs. J Stat Plan Inference 42(3):353–378

    MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Fan J, Gijbels I, Wand MP (1997) Generalized partially linear single-index models. J Am Stat Assoc 92(438):477–489

    MathSciNet  MATH  Google Scholar 

  • Cheng PE (1994) Nonparametric estimation of mean functionals with data missing at random. J Am Stat Assoc 89(425):81–87

    MATH  Google Scholar 

  • Czado C (2000) Multivariate regression analysis of panel data with binary outcomes applied to unemployment data. Stat Pap 41(3):281–304

    MathSciNet  MATH  Google Scholar 

  • Delecroix M, Hristache M, Patilea V (2006) On semiparametric estimation in single-index regression. J Stat Plan Inference 136(3):730–769

    MathSciNet  MATH  Google Scholar 

  • Demirdjian L, Mojirsheibani M (2017) Kernel classification with missing data and the choice of smoothing parameters. Stat Pap 60:1–27

    MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Einmahl U, Mason David M (2005) Uniform in bandwidth consistency of kernel-type function estimators. Ann Stat 33(3):1380–1403

    MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications: monographs on statistics and applied probability 66, vol 66. CRC Press, Boca Raton

    Google Scholar 

  • Guo X, Niu C, Yang Y, Xu W (2015) Empirical likelihood for single index model with missing covariates at random. Statistics 49(3):588–601

    MathSciNet  MATH  Google Scholar 

  • Guo C, Yang H, Lv J (2016) Two step estimations for a single-index varying-coefficient model with longitudinal data. Stat Pap 59:1–27

    MathSciNet  Google Scholar 

  • Guo X, Fang Y, Zhu X, Xu W, Zhu L (2018) Semiparametric double robust and efficient estimation for mean functionals with response missing at random. Comput Stat Data Anal 128:325–339

    MathSciNet  MATH  Google Scholar 

  • Hájek J, Šidák Z (1967) Theory of rank tests. Academic, New York

    MATH  Google Scholar 

  • Hájek J, Šidák Z, Sen PK (1999) Theory of rank tests. Probability and mathematical statistics. Academic, New York

    MATH  Google Scholar 

  • Healy M, Westmacott M (1956) Missing values in experiments analysed on automatic computers. J R Stat Soc C 5(3):203–206

    Google Scholar 

  • Hettmansperger Thomas P, McKean Joseph W (2011) Robust nonparametric statistical methods. Monographs on statistics and applied probability, 2nd edn, vol 119. CRC Press, Boca Raton

  • Horowitz Joel L, Hardle W (1996) Direct semiparametric estimation of single-index models with discrete covariates. J Am Statl Assoc 91(436):1632–1640

    MathSciNet  MATH  Google Scholar 

  • Ichimura H (1993) Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J Econom 58(1–2):71–120

    MathSciNet  MATH  Google Scholar 

  • Jaeckel Louis A (1972) Estimating regression coefficients by minimizing the dispersion of the residuals. Ann Math Stat 43:1449–1458

    MathSciNet  MATH  Google Scholar 

  • Jiang R, Qian W-M, Zhou Z-G (2016) Single-index composite quantile regression with heteroscedasticity and general error distributions. Stat Pap 57(1):185–203

    MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, Hoboken

    MATH  Google Scholar 

  • Kong E, Xia Y (2012) A single-index quantile regression model and its estimation. Econom Theory 28(4):730–768

    MathSciNet  MATH  Google Scholar 

  • Little Roderick JA (1992) Regression with missing X’s: a review. J Am Stat Assoc 87(420):1227–1237

    Google Scholar 

  • Little Roderick JA, Rubin Donald B (2002) Statistical analysis with missing data, 2nd edn. Wiley series in probability and statistics. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  • Liu W, Lu X (2011) Empirical likelihood for density-weighted average derivatives. Stat Pap 52(2):391–412

    MathSciNet  MATH  Google Scholar 

  • Liu J, Zhang R, Zhao W, Lv Y (2013) A robust and efficient estimation method for single index models. J Multivar Anal 122:226–238

    MathSciNet  MATH  Google Scholar 

  • Mehrotra Devan V (2004) A cautionary note on the analysis of randomized block designs with a few missing values. Stat Pap 45(1):51–66

    MathSciNet  MATH  Google Scholar 

  • Mojirsheibani M, Reese T (2017) Kernel regression estimation for incomplete data with applications. Stat Pap 58(1):185–209

    MathSciNet  MATH  Google Scholar 

  • Müller Ursula U, Schick A (2017) Efficiency transfer for regression models with responses missing at random. Bernoulli 23(4A):2693–2719

    MathSciNet  MATH  Google Scholar 

  • Müller Ursula U, Schick A (2018) Efficiency for heteroscedastic regression with responses missing at random. J Stat Plan Inference 196:132–143

    MathSciNet  MATH  Google Scholar 

  • Nagler T, Czado C (2016) Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas. J Multivar Anal 151:69–89

    MathSciNet  MATH  Google Scholar 

  • Niu C, Zhu L (2017) An adaptive-to-model test for parametric single-index models with missing responses. Electron J Stat 11(1):1491–1526

    MathSciNet  MATH  Google Scholar 

  • Patrick R (1992) Approximating the Shapiro-Wilk W-test for non-normality. Stat Comput 2(3):117–119

    Google Scholar 

  • Prakasa Rao BLS (2009) Conditional independence, conditional mixing and conditional association. Ann Inst Stat Math 61(2):441–460

    MathSciNet  MATH  Google Scholar 

  • Prentice Ross L (1988) Correlated binary regression with covariates specific to each binary observation. Biometrics 44(4):1033–1048

    MathSciNet  MATH  Google Scholar 

  • Robins James M, Rotnitzky A, Zhao LP (1994) Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 89(427):846–866

    MathSciNet  MATH  Google Scholar 

  • Robins James M, Rotnitzky A, Zhao LP (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc 90(429):106–121

    MathSciNet  MATH  Google Scholar 

  • Rubin Donald B (1976) Inference and missing data. Biometrika 63(3):581–592. https://doi.org/10.1093/biomet/63.3.581

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin Donald B (2004) Multiple imputation for nonresponse in surveys, vol 81. Wiley, Hoboken

    MATH  Google Scholar 

  • Schafer JL (1997) Analysis of incomplete multivariate data, vol 72. Monographs on statistics and applied probability. Chapman and Hall, London

    MATH  Google Scholar 

  • Serfling Robert J (1980) Approximation theorems of mathematical statistics. Wiley series in probability and mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Shen Y, Liang H-Y (2018) Quantile regression and its empirical likelihood with missing response at random. Stat Pap 59(2):685–707

    MathSciNet  MATH  Google Scholar 

  • Sievers Gerald L, Abebe A (2004) Rank estimation of regression coefficients using iterated reweighted least squares. J Stat Comput Simul 74(11):821–831

    MathSciNet  MATH  Google Scholar 

  • Wang Q, Rao JNK (2002) Empirical likelihood-based inference under imputation for missing response data. Ann Stat 30(3):896–924

    MathSciNet  MATH  Google Scholar 

  • Wang Q, Sun Z (2007) Estimation in partially linear models with missing responses at random. J Multivar Anal 98(7):1470–1493

    MathSciNet  MATH  Google Scholar 

  • Wang CY, Wang S, Zhao L-P, Ou S-T (1997) Weighted semiparametric estimation in regression analysis with missing covariate data. J Am Stat Assocn 92(438):512–525

    MathSciNet  MATH  Google Scholar 

  • Wang CY, Wang S, Gutierrez Roberto G, Carroll RJ (1998) Local linear regression for generalized linear models with missing data. Ann Stat 26(3):1028–1050

    MathSciNet  MATH  Google Scholar 

  • Wang Q, Linton O, Härdle W (2004) Semiparametric regression analysis with missing response at random. J Am Stat Assoc 99(466):334–345

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Shen J, He S, Wang Q (2010) Estimation of single index model with missing response at random. J Stat Plan Inference 140(7):1671–1690

    MathSciNet  MATH  Google Scholar 

  • Wang Q, Zhang T, Härdle WK (2016) An extended single-index model with missing response at random. Scand J Stat 43(4):1140–1152

    MathSciNet  MATH  Google Scholar 

  • Whitt W (2002) Stochastic-process limits: an introduction to stochastic-process limits and their application to queues. Springer, New York

    MATH  Google Scholar 

  • Wu L, Wu H (2002) Missing time-dependent covariates in human immunodeficiency virus dynamic models. J R Stat Soc C 51(3):297–318

    MathSciNet  MATH  Google Scholar 

  • Wu Tracy Z, Yu K, Yu Y (2010) Single-index quantile regression. J Multivar Anal 101(7):1607–1621

    MathSciNet  MATH  Google Scholar 

  • Xia Y (2006) Asymptotic distributions for two estimators of the single-index model. Econom Theory 22(06):1112–1137

    MathSciNet  MATH  Google Scholar 

  • Xia Y, Tong H, Li WK, Zhu L-X (2002) An adaptive estimation of dimension reduction space. J R Stat Soc B 64(3):363–410

    MathSciNet  MATH  Google Scholar 

  • Xu H-X, Fan G-L, Liang H-Y (2017) Hypothesis test on response mean with inequality constraints under data missing when covariables are present. Stat Pap 58(1):53–75

    MathSciNet  MATH  Google Scholar 

  • Yu P, Du J, Zhang Z (2018) Single-index partially functional linear regression model. Stat Pap. https://doi.org/10.1007/s00362-018-0980-6

    Article  MATH  Google Scholar 

  • Zeng P, He T, Zhu Y (2012) A Lasso-type approach for estimation and variable selection in single index models. J Comput Graph Stat 21(1):92–109

    MathSciNet  Google Scholar 

  • Zhao LP, Lipsitz S, Lew D (1996) Regression analysis with missing covariate data using estimating equations. Biometrics 52(4):1165–1182

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huybrechts F. Bindele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section contains necessary lemmas needed in the proofs of the main results stated in this manuscript.

Lemma 1

Under assumptions \((I_2)-(I_6),\) we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\sup _{u\in {\mathscr {F}}}|{\widehat{g}}^{(r)}(u)-g^{(r)}(u)|\rightarrow 0\quad a.s.\; \text{ as } n\rightarrow \infty ,\quad r=0,1,2. \end{aligned}$$

This lemma whose proof can be constructed along the lines as given in Delecroix et al. (2006) ensures the uniform strong consistency of \({\widehat{g}}\) with its derivatives. For sake of brevity the proof is omitted here.

Lemma 2

Under assumptions \((I_{1})-(I_{7})\) and for \({\mathbf {x}}\in \varGamma ,\) we have

  1. (a)

    \(\displaystyle \lim \nolimits _{n\rightarrow \infty }\sup \nolimits _{{\varvec{\beta }}\in {\mathscr {B}}} \left\| {\widetilde{S}}_{jn}({\varvec{\beta }})-S_{jn}({\varvec{\beta }})\right\| =0\;a.s.\) and \(\displaystyle \frac{1}{n}\sum \nolimits _{i=1}^{n}w_{i}\{g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})\}^{2}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }\varphi ^{2}(F_{ij}(\xi _{ij})) \rightarrow {\mathbf {V}}_{j}\;a.s.\)

  2. (b)

    \(\displaystyle \lim \nolimits _{n\rightarrow \infty }\sup \nolimits _{{\varvec{\beta }}\in {\mathscr {B}}} \left\| {\widetilde{S}}_{jn}({\varvec{\beta }})-{\widetilde{T}}_{jn}({\varvec{\beta }}) \right\| =0\;a.s.\quad \text{ and }\quad \sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\ \xrightarrow {{\mathscr {D}}} N(\mathbf {0},{\mathbf {V}}_{j})\quad \text{ as } n\rightarrow \infty .\)

The first result in this lemma implies that \(\sqrt{n}\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_0)- {\widetilde{T}}_{jn}({\varvec{\beta }}_0)\big )\ \xrightarrow {P} \ 0.\) Thus, \(\sqrt{n}{\widetilde{S}}_{jn}({\varvec{\beta }}_0)\) and \(\sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_0)\) have the same asymptotic distribution (Hettmansperger and McKean 2011). While the first result of this theorem holds for \({\varvec{\beta }}\in {\mathscr {B}},\) one could just restrict ourselves in \({\mathscr {B}}_{n}\) for the remaining part of the paper instead of considering \({\mathscr {B}}.\) As a consequence of Lemma 2, with probability 1, \({\widetilde{S}}_{n}({\varvec{\beta }})={\widetilde{T}}_{jn}({\varvec{\beta }})+o(1/\sqrt{n}).\) A Taylor expansion of \(T_{jn}({\varvec{\beta }})\) around \({\varvec{\beta }}_0\) gives

$$\begin{aligned} {\widetilde{T}}_{jn}({\varvec{\beta }})={\widetilde{T}}_{jn}({\varvec{\beta }}_{0}) +({\varvec{\beta }}-{\varvec{\beta }}_{0})^{\tau }\nabla _{{\varvec{\beta }}} {\widetilde{T}}_{jn}({\varvec{\beta }}_{0}) +\frac{1}{2}({\varvec{\beta }}-{\varvec{\beta }}_{0})^{\tau }\nabla ^{2}_{{\varvec{\beta }}} {\widetilde{T}}_{jn}(\varvec{\zeta })({\varvec{\beta }}-{\varvec{\beta }}_{0}), \end{aligned}$$

where \(\varvec{\zeta }\) belongs in the line segment joining \({\varvec{\beta }}_0\) and \({\varvec{\beta }}.\) Thus, with probability 1,

$$\begin{aligned} {\widetilde{S}}_{jn}({\varvec{\beta }})={\widetilde{T}}_{jn}({\varvec{\beta }}_{0}) +({\varvec{\beta }}-{\varvec{\beta }}_{0})^{\tau }\nabla _{{\varvec{\beta }}} {\widetilde{T}}_{jn}({\varvec{\beta }}_{0}) +\frac{1}{2}({\varvec{\beta }}-{\varvec{\beta }}_{0})^{\tau }\nabla ^{2}_{{\varvec{\beta }}} {\widetilde{T}}_{jn}(\varvec{\zeta })({\varvec{\beta }}-{\varvec{\beta }}_{0})+o(1/\sqrt{n}). \end{aligned}$$

\(\widehat{{\varvec{\beta }}}_{n}^{j}\) being a solution of \({\widetilde{S}}_{jn}({\varvec{\beta }})=0,\) we have

$$\begin{aligned} 0= & {} {\widetilde{S}}_{jn}(\widehat{{\varvec{\beta }}}_{n}^{j})={\widetilde{T}}_{jn} ({\varvec{\beta }}_{0})+\nabla _{{\varvec{\beta }}} {\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\cdot (\widehat{{\varvec{\beta }}}_{n}^{j} -{\varvec{\beta }}_{0})+\frac{1}{2}(\widehat{{\varvec{\beta }}}_{n}^{j} -{\varvec{\beta }}_{0})^{\tau }\nonumber \\&\quad \cdot \nabla ^{2}_{{\varvec{\beta }}}{\widetilde{T}}_{jn} (\varvec{\zeta }_{n}^{j})\cdot (\widehat{{\varvec{\beta }}}_{n}^{j}-{\varvec{\beta }}_{0})+o(1/\sqrt{n}), \end{aligned}$$
(1)

where \(\varvec{\zeta }_{n}^{j}=\lambda {\varvec{\beta }}_{0}+(1-\lambda )\widehat{{\varvec{\beta }}}_{n}^{j}.\)

Lemma 3

Under assumptions \((I_{1})-(I_7)\) and for any \({\mathbf {x}}\in \varGamma ,\) the following hold:

  1. (a)

    \(\nabla _{{\varvec{\beta }}} {\widetilde{T}}_{jn}({\varvec{\beta }}_{0}) \rightarrow {\mathbf {W}}_{j} \ a.s.\)

  2. (b)

    \(\nabla ^{2}_{{\varvec{\beta }}}{\widetilde{T}}_{jn}(\varvec{\zeta }_{n}^{j})\) is almost surely bounded.

Proof of Lemma 2

Let \(a_{ijn}=R(\xi _{ij}({\varvec{\beta }}))/(n+1)\) and let c be any arbitrary positive constant. Then, \(\displaystyle S_{jn}({\varvec{\beta }})=\frac{1}{n}\sum \nolimits _{i=1}^{n}w_{i}{\mathbf {x}}_{i} {\widehat{g}}^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})\varphi (a_{ijn}).\)

(a) For any \({\mathbf {x}}\in \varGamma \) and \({\varvec{\beta }}\in {\mathscr {B}},\) the triangle inequality gives

$$\begin{aligned} \Vert {\widetilde{S}}_{jn}({\varvec{\beta }})-S_{jn}({\varvec{\beta }})\Vert\le & {} \frac{1}{n}\sum _{i=1}^{n}w_{i}\Vert {\mathbf {x}}_{i}\Vert |\varphi (a_{ijn})|| {\widehat{g}}^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})-g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})|. \end{aligned}$$

Since \(\varphi \) is bounded, there exists a positive constant c such that \(|\varphi (t)|\le c,\) for any \(t\in (0,1).\) Also, since \(w_{i}\) are positive and \(\sum _{i=1}^{n}w_{i}=1,\) \(w_{i}\le 1,\) for any i. This together with Swartz inequality imply that

$$\begin{aligned} \sup _{{\varvec{\beta }}\in {\mathscr {B}}}\Vert {\widetilde{S}}_{jn}({\varvec{\beta }})- S_{jn}({\varvec{\beta }})\Vert\le & {} c\left[ \frac{1}{n}\sum _{i=1}^{n}\Vert {\mathbf {x}}_{i}\Vert ^{2}\right] ^{1/2}\left[ \sup _{{\varvec{\beta }}\in {\mathscr {B}}}\max _{1\le i\le n}|{\widehat{g}}^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})-g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})|^{2}\right] ^{1/2}. \end{aligned}$$

By Lemma 1, \(\displaystyle \lim \nolimits _{n\rightarrow \infty }\sup \nolimits _{{\varvec{\beta }}\in {\mathscr {B}}}\max _{1\le i\le n}|{\widehat{g}}^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})-g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})|^{2}= 0\;a.s.\) and by SLLN, \(\displaystyle \frac{1}{n}\sum \nolimits _{i=1}^{n}\Vert {\mathbf {x}}_{i}\Vert ^{2}\) converges almost surely to \(E[\Vert {\mathbf {x}}\Vert ^{2}]<\infty \;a.s.,\) by assumption \((I_6).\) Hence,

$$\begin{aligned} \lim _{n\rightarrow \infty }\sup _{{\varvec{\beta }}\in {\mathscr {B}}}\Vert {\widetilde{S}}_{jn} ({\varvec{\beta }})-S_{jn}({\varvec{\beta }})\Vert =0\;a.s. \end{aligned}$$

(b) Also,

$$\begin{aligned}{\widetilde{S}}_{jn}({\varvec{\beta }})-{\widetilde{T}}_{jn}({\varvec{\beta }}) =\frac{1}{n}\sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }})\left[ \varphi (a_{ijn})-\varphi (F_{ij}(\xi _{ij}({\varvec{\beta }})))\right] . \end{aligned}$$

Recall that following Hájek and Šidák (1967), \(a_{ijn}\rightarrow F_{ij}(\xi _{ij}({\varvec{\beta }}))\; a.s.\) as \(n\rightarrow \infty ,\) for all \({\varvec{\beta }}\in {\mathscr {B}}\) and for all i\(j=1,2.\) So, by the generalized continuous mapping theorem (Whitt 2002),

$$\begin{aligned}\max _{1\le i\le n}\left| \varphi (a_{ijn}) -\varphi (F_{ij}(\xi _{ij}({\varvec{\beta }})))\right| \rightarrow 0\; a.s. \quad \hbox { as}\ n\rightarrow \infty . \end{aligned}$$

From the boundedness of \(g^{\prime }(t)\) and the fact that \(w_{i}\le 1,\) for all i,  we have

$$\begin{aligned}&\sup _{{\varvec{\beta }}\in {\mathscr {B}}}\Vert {\widetilde{S}}_{jn}({\varvec{\beta }})- {\widetilde{T}}_{jn}({\varvec{\beta }})\Vert \le \left[ \frac{1}{n}\sum _{i=1}^{n} \{\Vert {\mathbf {x}}_{i}\Vert J({\mathbf {x}}_{i})\}^{2}\right] ^{1/2}\\&\quad \left[ \sup _{{\varvec{\beta }} \in {\mathscr {B}}}\max _{1\le i\le n}\left| \varphi (a_{ijn}) -\varphi (F_{ij}(\xi _{ij}({\varvec{\beta }})))\right| ^{2}\right] ^{1/2}, \end{aligned}$$

by assumption \((I_3)\) and Cauchy–Schwarz inequality. Thus,

$$\begin{aligned}\lim _{n\rightarrow \infty }\sup _{{\varvec{\beta }}\in {\mathscr {B}}} \Vert {\widetilde{S}}_{jn}({\varvec{\beta }})-{\widetilde{T}}_{jn}({\varvec{\beta }})\Vert =0\;a.s., \end{aligned}$$

since the SLLN ensures that \(\displaystyle \frac{1}{n}\sum \nolimits _{i=1}^{n}\{\Vert {\mathbf {x}}_{i}\Vert J({\mathbf {x}}_{i})\}^{2}\rightarrow E(\{\Vert {\mathbf {x}}\Vert J({\mathbf {x}})\}^{2})<\infty \; a.s.,\) by assumption \((I_3)\) and \((I_6)\) and,

$$\begin{aligned} \sup _{{\varvec{\beta }}\in {\mathscr {B}}}\max _{1\le i\le n}\left| \varphi (a_{ijn})-\varphi (F_{ij}(\xi _{ij}({\varvec{\beta }})))\right| ^{2}\rightarrow 0\;a.s.\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

Next,

$$\begin{aligned} E[{\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})] =\frac{1}{n}\sum _{i=1}^{n}E\left[ w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})\left( \varphi \left( \frac{R(\xi _{j}({\varvec{\beta }}_{0}))}{n+1}\right) -\varphi \left( F_{j}(\xi _{j}({\varvec{\beta }}_{0}))\right) \right) \right] , \end{aligned}$$

from which Cauchy–Schwarz inequality gives

$$\begin{aligned} \Vert E[{\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})]\Vert\le & {} \left[ \frac{1}{n}\sum _{i=1}^{n}E\{(w_{i}{\mathbf {x}}_{i}g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}) )^{2}\}\right] ^{1/2}\\&\left[ E\left( \left| \varphi \left( \frac{R(\xi _{j} ({\varvec{\beta }}_{0}))}{n+1}\right) -\varphi \left( F_{j}(\xi _{j} ({\varvec{\beta }}_{0}))\right) \right| ^{2}\right) \right] ^{1/2}. \end{aligned}$$

From the discussion above,

$$\begin{aligned}\left| \varphi \left( \frac{R(\xi _{j}({\varvec{\beta }}_{0}))}{n+1}\right) -\varphi \left( F_{j}(\xi _{j}({\varvec{\beta }}_{0}))\right) \right| ^{2} \rightarrow 0\; a.s.\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

This together with the generalized dominated convergence theorem gives

$$\begin{aligned} E\left( \left| \varphi \left( \frac{R(\xi _{j}({\varvec{\beta }}_{0}))}{n+1} \right) -\varphi \left( F_{j}(\xi _{j}({\varvec{\beta }}_{0}))\right) \right| ^{2}\right) \rightarrow 0\;\hbox { as}\ n\rightarrow \infty . \end{aligned}$$

Thus, \(E[{\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})]\rightarrow \;0\) as \(n\rightarrow \infty .\) By Chebychev’s inequality, for any \(\epsilon >0\), we have

$$\begin{aligned} P\left( \sqrt{n}\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_0)-{\widetilde{T}}_{jn} ({\varvec{\beta }}_0)\big )>\epsilon \right) \le \epsilon ^{-2}E\Big [n\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_0) -{\widetilde{T}}_{jn}({\varvec{\beta }}_0)\big )^{2}\Big ]. \end{aligned}$$

To complete the proof, it sufficies to show that \(E\big [n\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_0)-{\widetilde{T}}_{jn }({\varvec{\beta }}_0)\big )^{2}\big ]\rightarrow 0\) as \(n\rightarrow \infty \). Following Hájek et al. (1999, p. 192),

$$\begin{aligned}&E\left[ n\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn} ({\varvec{\beta }}_{0})\big )^{2}\right] \\&\quad =\frac{1}{n}E \left[ \left\{ \sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})\left( \varphi \left( \frac{R(\xi _{ij} ({\varvec{\beta }}_{0}))}{n+1}\right) -\varphi \left( F_{j}(\xi _{ij} ({\varvec{\beta }}_{0}))\right) \right) \right\} ^{2}\right] \\&\quad \le \frac{n}{n-1}\left\{ \frac{1}{n}\sum _{i=1}^{n}E[(w_{i}{\mathbf {x}}_{i} g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}))^{2}]\right\} E \left[ \left( \varphi \left( \frac{R(\xi _{j})}{n+1}\right) -\varphi \left( F_{j}(\xi _{j})\right) \right) ^{2}\right] . \end{aligned}$$

From the SLLN, it is not hard to see that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}(w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0}))^{2}\le \frac{1}{n}\sum _{i=1}^{n}\Vert {\mathbf {x}}_{i}\Vert ^{2}J^{2}({\mathbf {x}}_{i})\rightarrow E[\Vert {\mathbf {x}}\Vert ^{2}J^{2}({\mathbf {x}})]<\infty \;a.s., \end{aligned}$$

by assumption \((I_3)\) and \((I_6).\) This implies that the right hand side the above inequality converges to zero. Thus,

$$\begin{aligned} E\left[ n\big ({\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn} ({\varvec{\beta }}_{0})\big )^{2}\right] \rightarrow 0\quad \text{ as } n\rightarrow \infty \end{aligned}$$

and therefore,

$$\begin{aligned} \lim _{n\rightarrow \infty }P\left( \sqrt{n}\big ({\widetilde{S}}_{jn} ({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\big )>\epsilon \right) =0. \end{aligned}$$

Now, by assumption \((I_7),\) we have \(E\{{\widetilde{S}}_{jn}({\varvec{\beta }}_{0})\}\rightarrow 0\) as \(n\rightarrow \infty .\) Since

$$\begin{aligned} E\{{\widetilde{S}}_{jn}({\varvec{\beta }}_{0})-{\widetilde{T}}_{jn}({\varvec{\beta }}_{0}))\}\rightarrow 0, \end{aligned}$$

we have \(E\{{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\}\rightarrow 0\) as \(n\rightarrow \infty .\) Recall that \({\widetilde{T}}_{jn}({\varvec{\beta }}_{0})=\frac{1}{n}\sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\varphi (F_{j}(\xi _{j}))=\frac{1}{n}\sum _{i=1}^{n}V_{ij},\) where \(V_{ij}=w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\varphi [F_{j}(\xi _{j})].\) To obtain the asymptotic distribution of \({\widetilde{T}}_{jn}({\varvec{\beta }}_0),\) we employ the Cramér–Wold device (Serfling 1980). To this end, set

$$\begin{aligned} U_{jn}=n^{-1/2}\sum _{i=1}^{n}{\mathbf {a}}^{T}w_{i}{\mathbf {x}}_{i}\{g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\}\varphi [F_{j}(\xi _{j})] ={\mathbf {a}}^{\tau }{\widetilde{T}}_{n}({\varvec{\beta }}_{0}), \end{aligned}$$

where \({\mathbf {a}}\in {\mathbb {R}}^q.\) Since \(E\{{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\}\rightarrow 0\) and \(E(U_{jn})={\mathbf {a}}^{T} E\{T_{jn}({\varvec{\beta }}_0)\},\) we have \(E(U_{jn})\rightarrow 0.\) From the fact that \(({\mathbf {x}}_{i},y_{i},\varepsilon _{i})\), \(i=1,\ldots ,n,\) is a random sample, \(({\mathbf {x}}_{i},z_{ij}, \xi _{ij})\) is also a random sample. Conditional on \({\mathbf {x}}_{i},\) \(\{V_{nj}\}_{n\ge 1}\) is a sequence of conditional independent random variables with identical distribution (Rao 2009).

$$\begin{aligned} \text{ Var }(U_{jn})= & {} \frac{1}{n}\sum _{i=1}^{n}E\left[ \left( w_{i} {\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\right) ^{2} E\left\{ \varphi ^{2}(F_{j}(\xi _{j}))|{\mathbf {x}}_{i}\right\} \right] \ \rightarrow \ {\mathbf {a}}^{\tau }{\mathbf {V}}_{j}{\mathbf {a}}\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

Note that \({\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\) is the sum of identically distributed conditionally independent functions of random variables. Hence, the limiting distribution is established by verifying the conditional Lindeberg–Feller condition for the applicability of the conditional Central Limit Theorem. To do this, let \(\zeta _{jn}=\sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_{0}))\) and set \(\sigma _{jn}^{2}=Var(\zeta _{jn}).\) We need to show that for any \(\mu >0,\)

$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{1}{\sigma _{nj}^{2}}\sum _{i=1}^{n}E\left[ \frac{1}{n} \left( w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}) \right) ^{2}E\{\varphi ^{2}[F_{j}(\xi _{j})|{\mathbf {x}}_{i}]\}\right] \\&\quad \times I\left( \Big |\frac{1}{\sqrt{n}}\big (w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\big )\varphi [F_{j}(\xi _{j})]\Big |>\mu \sigma _{nj}\right) =0. \end{aligned}$$

To see this, note that since \(w_{i}\le 1,\) for all i,  we have

$$\begin{aligned} \frac{1}{\sqrt{n}}|w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})|\le n^{-1/2}\Vert {\mathbf {a}}\Vert \Vert {\mathbf {x}}_{i}\Vert J({\mathbf {x}}_{i})\rightarrow 0\;a.s. \quad \text{ as } n\rightarrow \infty , \end{aligned}$$

since \(\Vert {\mathbf {x}}\Vert J({\mathbf {x}})\) is almost surely finite, as \(E(\Vert {\mathbf {x}}\Vert J({\mathbf {x}}))<\infty ,\) by \((I_3)\) and \((I_6).\) Set

$$\begin{aligned} \lambda _{n}=\displaystyle \big [\max _{1\le i\le n}n^{-1}|w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})|\Big ]^{1/2}. \end{aligned}$$

Then \(\lambda _{n}\rightarrow 0\) as \(n\rightarrow \infty ,\) and, is independent of i. Since \(\sigma ^{2}_{jn}\) converges to a positive quantity, the ratio \(\sigma _{jn}/\lambda _{n}\rightarrow \infty \) as \(n\rightarrow \infty .\) Now, it is easy to see that

$$\begin{aligned}&\sum _{i=1}^{n}E\Big [\frac{1}{n}(w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}))^{2}E\{\varphi ^{2}[F_{j}(\xi _{ij})] |{\mathbf {x}}_{i}\}I\\&\quad \Big (\Big |\frac{1}{\sqrt{n}}(w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\varphi [F_{j}(\xi _{ij})]\Big |>\mu \sigma _{jn}\Big )\Big ] \end{aligned}$$

is less than or equal to

$$\begin{aligned} E\left\{ E\Big [\varphi ^{2}[F_{j}(\xi _{j})]I\Big (\big |\varphi [F_{j}(\xi _{j})] \big |>\mu \sigma _{jn}/\lambda _{n}\Big )\Big |{\mathbf {x}}\Big ]\right\} \times \frac{1}{n}\sum _{i=1}^{n}E\left[ (w_{i}{\mathbf {a}}^{\tau }{\mathbf {x}}_{i}g^{\prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}))^{2}\right] . \end{aligned}$$

In this expression, the second term \(\displaystyle \lim _{n \rightarrow \infty } \frac{1}{n}\sum \nolimits _{i=1}^{n}E\left[ (w_{i}{\mathbf {x}}_{i}g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0}))^{2}\right] \le E(\Vert {\mathbf {x}}\Vert ^{2}J^{2}({\mathbf {x}})) < \infty .\) From the boundedness of \(\varphi \) and applying the Dominated Convergence Theorem to the first term, we have

$$\begin{aligned} E\left\{ E\Big [\varphi ^{2}[F_{j}(\xi _{j})]I\Big (\big |\varphi [F_{j}(\xi _{j})]\big |>\mu \sigma _{jn}/\lambda _{n}\Big )\Big |{\mathbf {x}}\Big ]\right\} \rightarrow 0\quad as\quad n\rightarrow \infty . \end{aligned}$$

This established the conditional Lindeberg–Feller condition and thus, the conditional Central Limit Theorem (Rao 2009) gives \(\sqrt{n}U_{jn}({\varvec{\beta }}_0)\ \xrightarrow {{\mathscr {D}}} \ N(\mathbf {0},{\mathbf {a}}^{\tau }{\mathbf {V}}_{j}{\mathbf {a}})\) as \(n\rightarrow \infty .\) Thus, by the Cramér–Wold device (Serfling 1980), \(\sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_0)\ \xrightarrow {{\mathscr {D}}} \ N(\mathbf {0},{\mathbf {V}}_{j})\) as \(n\rightarrow \infty .\) \(\square \)

Proof of Lemma 3

Differentiating \({\widetilde{T}}_{jn}({\varvec{\beta }})\) with respect to \({\varvec{\beta }},\) we have

$$\begin{aligned} \nabla _{{\varvec{\beta }}}{\widetilde{T}}_{jn}({\varvec{\beta }})= & {} -\frac{1}{n}\sum _{i=1}^{n} w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }[g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})]^{2} f_{ij}(\xi _{ij}({\varvec{\beta }}))\varphi ^{\prime }(F_{ij}(\xi _{ij}({\varvec{\beta }})))\\&\quad +\frac{1}{n}\sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }g^{\prime \prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }})\varphi (F_{ij}(\xi _{ij}({\varvec{\beta }}))). \end{aligned}$$

At \({\varvec{\beta }}={\varvec{\beta }}_{0},\) we have

$$\begin{aligned} \nabla _{{\varvec{\beta }}}{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})= & {} -\frac{1}{n}\sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }[g^{\prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})]^{2}f_{j}(\xi _{j}))\varphi ^{\prime }(F_{j}(\xi _{j}))\\&\quad +\frac{1}{n}\sum _{i=1}^{n}w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }g^{\prime \prime } ({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0}\varphi (F_{j}(\xi _{j})). \end{aligned}$$

Note that \(E[w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }[g^{\prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})] ^{2}E\{f_{j}(\xi _{j}))\varphi ^{\prime }(F_{j}(\xi _{j}))|{\mathbf {x}}_{i}\}] =E\big [w{\mathbf {x}}{\mathbf {x}}^{\tau }\{g^{\prime }({\mathbf {x}}^{\tau }{\varvec{\beta }}_{0}\}^{2} \mu _{j}({\mathbf {x}})\big ]<\infty ,\) by assumptions \((I_1),\) \((I_3)\) and \((I_6).\) Also, \(E[w_{i}{\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }g^{\prime \prime }({\mathbf {x}}_{i}^{\tau } {\varvec{\beta }}_{0})E\{\varphi (F_{j}(\xi _{j}))|{\mathbf {x}}_{i}\}]=E[w_{i} {\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }g^{\prime \prime }({\mathbf {x}}_{i}^{\tau }{\varvec{\beta }}_{0})\nu _{j}({\mathbf {x}}_{i})],\) which is also finite by assumptions \((I_1),\) \((I_3)\) and \((I_6).\) Now, a direct application of the SLLN, gives \(\nabla _{{\varvec{\beta }}}{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\rightarrow {\mathbf {W}}_{j}\;a.s.\) If \(\varepsilon \) is independent of \({\mathbf {x}},\) \(\xi _{j}\) is independent of \({\mathbf {x}}.\) Hence,

$$\begin{aligned} \mu _{j}({\mathbf {x}})=E[f_{j}(\xi _{j})\varphi ^{\prime }(F_{j}(\xi _{j}))|{\mathbf {x}}] =E[f_{j}(\xi _{j})\varphi ^{\prime }(F_{j}(\xi _{j}))]=\int f_{j}(\xi _{j})\varphi ^{\prime }(F_{j}(\xi _{j})) dF_{j}(\xi _{j}). \end{aligned}$$

From integration by parts, \(\displaystyle \int f_{j}(\xi _{j})\varphi ^{\prime }(F_{j}(\xi _{j})) dF_{j}(\xi _{j}){=}-\int _{-\infty }^{\infty }f^{\prime }_{j}(\xi _{j}) \varphi (F_{j}(\xi _{j}))d\xi _{j}\) since \(f_{j}(\xi _{j})\varphi (F_{j}(\xi _{j}))\rightarrow 0\) as \(\xi _{j}\rightarrow \pm \infty .\) Putting \(x^{j}=F_{j}(\xi _{j}),\) we have

$$\begin{aligned} \int _{-\infty }^{\infty }f_{j}^{\prime }(\xi _{j})\varphi (F_{j} (\xi _{j}))d\xi _{j}=-\int _{0}^{1}\varphi (x^{j})\varphi _{f_{j}} (x^{j})dx^{j}=-\gamma _{j\varphi }^{-1}. \end{aligned}$$
(2)

Also, \(\nu _{j}({\mathbf {x}})=E[\varphi (F_{j}(\xi _{j}))|{\mathbf {x}}],\) from which putting \(x^{j}=F_{j}(\xi _{j}),\) \(dx^{j}=dF_{j}(\xi _{j})\) and

$$\begin{aligned} \nu _{j}({\mathbf {x}})= & {} E[\varphi (F_{j}(\xi _{j}))|{\mathbf {x}}]=E[\varphi (F_{j} (\xi _{j}))]=\int _{-\infty }^{\infty }\varphi (F_{j}(\xi _{j}))dF_{j} (\xi _{j})\nonumber \\= & {} \int _{0}^{1}\varphi (x^{j})dx^{j}=0, \end{aligned}$$
(3)

by assumption \((I_{1}).\) From Eqs. (2) and (3),

$$\begin{aligned} {\mathbf {W}}_{j}= & {} -E\big [w{\mathbf {x}}{\mathbf {x}}^{\tau }\{g^{\prime }({\mathbf {x}}^{\tau }{\varvec{\beta }}_{0}\}^{2} \mu _{j}({\mathbf {x}})\big ]+E\big [w{\mathbf {x}}{\mathbf {x}}^{\tau }\{g^{\prime \prime }({\mathbf {x}}^{\tau } {\varvec{\beta }}_{0})\}\nu _{j}({\mathbf {x}})\big ]\\= & {} -E\big [w{\mathbf {x}}{\mathbf {x}}^{\tau }\{g^{\prime } ({\mathbf {x}}^{\tau }{\varvec{\beta }}_{0}\}^{2}\mu _{j}({\mathbf {x}})\big ]\\= & {} \gamma _{j\varphi }^{-1}E\big [w{\mathbf {x}}{\mathbf {x}}^{\tau }\{g^{\prime }({\mathbf {x}}^{\tau } {\varvec{\beta }}_{0}\}^{2}\big ]\\= & {} \gamma _{j\varphi }^{-1}\varSigma . \end{aligned}$$

Finally,

$$\begin{aligned}&\nabla _{{\varvec{\beta }}}^{2}{\widetilde{T}}_{jn}(\varvec{\xi }_n)\\&\quad =-\frac{3}{n} \sum _{i=1}^{n} w_{i}({\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }){\mathbf {x}}_{i}g^{\prime \prime } (\varvec{\xi }_{n}^{T}{\mathbf {x}}_{i})g^{\prime }(\varvec{\xi }_{n}^{T}{\mathbf {x}}_{i}) {\tilde{f}}_{i}(\eta _{i}(\varvec{\xi }_{n}))\varphi ^{\prime }({\tilde{F}}_{i} ({\tilde{\eta }}_{i}(\varvec{\xi }_{n})))\\&\qquad +\frac{1}{n}\sum _{i=1}^{n}w_{i}({\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }){\mathbf {x}}_{i} \left( g^{\prime }({\mathbf {x}}_{i}^{\tau }\varvec{\xi }_{n})\right) ^{3}{\tilde{f}}_{i}^{2} ({\tilde{\eta }}_{i}(\varvec{\xi })_{n})\varphi ^{\prime \prime }({\tilde{F}}_{i} ({\tilde{\eta }}_{i}(\varvec{\xi }_{n})))\\&\qquad +\frac{1}{n}\sum _{i=1}^{n}w_{i}({\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }){\mathbf {x}}_{i} \left( g^{\prime }({\mathbf {x}}_{i}^{\tau }\varvec{\xi }_{n})\right) ^{3} {\tilde{f}}_{i}^{\prime }({\tilde{\eta }}_{i}(\varvec{\xi })_{n})\varphi ^{\prime } ({\tilde{F}}_{i}({\tilde{\eta }}_{i}(\varvec{\xi }_{n})))\\&\qquad +\frac{1}{n}\sum _{i=1}^{n}w_{i}({\mathbf {x}}_{i}{\mathbf {x}}_{i}^{\tau }) {\mathbf {x}}_{i}g^{\prime \prime \prime }({\mathbf {x}}_{i}^{\tau }\varvec{\xi }_{n})\varphi ^{\prime } ({\tilde{F}}_{i}({\tilde{\eta }}_{i}(\varvec{\xi }_{n}))). \end{aligned}$$

Assumptions \((I_1)-(I_3)\) and \((I_6)\) together with a direct application of the SLLN, imply that each term to the right hand side of the above equality is bounded in probability, which in turn implies that \(\nabla _{{\varvec{\beta }}}^{2}{\widetilde{T}}_{n}(\varvec{\xi }_n)\) is bounded in probability. \(\square \)

Proof of Theorem 2

From the consistency of \(\widehat{{\varvec{\beta }}}_{n}^{j}\) and the boundedness of \(\nabla _{{\varvec{\beta }}}^{2}{\widetilde{T}}_{jn}(\varvec{\xi }_n),\) we have

$$\begin{aligned} (\widehat{{\varvec{\beta }}}_{n}^{j}-{\varvec{\beta }}_{0})\nabla _{{\varvec{\beta }}}^{2} {\widetilde{T}}_{jn}(\varvec{\xi }_{n})\rightarrow 0\;a.s. \end{aligned}$$

Then, Eq. (1) is reduced to \(0={\widetilde{T}}_{jn}({\varvec{\beta }}_{0})+\nabla _{{\varvec{\beta }}} {\widetilde{T}}_{jn}({\varvec{\beta }}_{0})\cdot (\widehat{{\varvec{\beta }}}_{n}^{j} -{\varvec{\beta }}_{0})+o_{p}(1/\sqrt{n}).\) Thus, taking into account Lemma 3a we have \(\sqrt{n}(\widehat{{\varvec{\beta }}}_{n}^{j}-{\varvec{\beta }}_{0})=-{\mathbf {W}}_{j}^{-} \sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_{0})+o_{p}(1).\) Since \(\sqrt{n}{\widetilde{T}}_{jn}({\varvec{\beta }}_0)\ \xrightarrow {{\mathscr {D}}} \ N(\mathbf {0},{\mathbf {V}}_{j})\) as \(n\rightarrow \infty ,\) we have \(\sqrt{n}(\widehat{{\varvec{\beta }}}_{n}^{j}-{\varvec{\beta }}_{0})\ \xrightarrow {{\mathscr {D}}} \ N\big (\mathbf {0},{\mathbf {W}}_{j}^{-}{\mathbf {V}}_{j}{\mathbf {W}}_{j}^{-}\big ).\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abebe, A., Bindele, H.F., Otlaadisa, M. et al. Robust estimation of single index models with responses missing at random. Stat Papers 62, 2195–2225 (2021). https://doi.org/10.1007/s00362-020-01184-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-020-01184-2

Keywords

Mathematics Subject Classification

Navigation