Skip to main content
Log in

Formation of Free Amino Acids and Bioactive Peptides During the Ripening of Bulgarian White Brined Cheeses

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bioactive peptides and free amino acids obtained from Bulgarian goat, sheep and cow white brined cheeses, produced with same starter culture, during ripening were evaluated. The concentration of total free amino acids was increasing in all tested cheeses in the first 30 days of ripening. In the next 30 days in sheep cheeses, the concentration increased as recorded for most of the amino acids. Amino acids with highest levels detected throughout the whole ripening period in goat, sheep and cow cheese types were leucine, phenylalanine, arginine, valine and lysine. MALDI-TOF analysis of evaluated cheeses resulted in detection of production of bioactive peptide derivates from milk proteins: 51 peptides in cow, 31 peptides in sheep and 22 peptides in goat cheeses. Peptide αs1-CN (f35-40) was found only in cow cheese. In cow cheese, higher intensity was detected for αs1-CN (f1-9) and β-CN (f194-203 and f203-219) peptides. In goat cheese was recorded αs1-CN peptides, and there was a tendency to increase the peptides released from β-CN, with the highest intensity of fragments αs1-CN (f1-9 and f24-30) and β-CN (f194-209 and f203-219). In sheep cheese, the recorded primarily peptides were αs1-CN and peptides released from β-CN. Different bioactive peptides, derivate from casein, were detected as follows: 6 peptides were ACE inhibitory peptides, 3 peptides were αS1-casokinins, 1 peptide was caseinophopeptide, 1 peptide was immunopeptide. Twelve bioactive peptides were recorded to be derivates from β-casein: 1 peptide was ACE peptide, 4 peptides were caseino-phosphopeptides, 1 peptide was immunopeptide, 1 peptide β-casokinin, 1 antibacterial peptide and 4 multifunctional peptides. Of peptides released by proteolysis of αS2-CN was found 1 bioactive peptide with antimicrobial activity. On our best knowledge, this paper contributes new data about free amino acids and bioactive peptides in the connection between type of milk and period for cheese ripening in the Bulgarian goat, sheep and cow white brined cheeses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. OECD. (2018). Table A.5 - world dairy projections: butter and cheese. OECD-FAO Agricultural Outlook 2018–2027. OECD Publishing, Paris. 10.1787/agr_outlook-2018-table 112-en

  2. Iwaniak A, Darewicz M, Minkiewicz P (2018) Peptides derived from foods as supportive diet components in the prevention of metabolic syndrome. Compr Rev Food Sci Food Safety 17(1):63–81. https://doi.org/10.1111/1541-4337.12321

    Article  CAS  Google Scholar 

  3. Addeo F, Chianese L, Salzano A, Sacchi F, Cappuccio U, Ferranti P, Malorni A (1992) Characterization of the 12% trichloroacetic acid-insoluble oligopeptides of Parmigiano-Reggiano cheese. J Dairy Res 59:401–411. https://doi.org/10.1017/S0022029900030673

    Article  CAS  Google Scholar 

  4. Addeo F, Chianese L, Sacchi R, Spagna Musso S, Ferranti P, Malorni A (1994) Characterization of the oligopeptides of Parmigiano-Reggiano cheese soluble in 120 g trichloroacetic acid/L. J Dairy Res 61(3):365–374. https://doi.org/10.1017/S0022029900030788

    Article  CAS  PubMed  Google Scholar 

  5. Ferranti P, Itolli E, Barone F, Malorni A, Garro G, Laezza P, Chianese L, Migliaccio F, Stingo V, Addeo F (1997) Combined high-resolution chromatographic techniques (FPLC and HPLC) and mass spectrometry based identification of peptides and proteins in Grana Padano cheese. Lait 77:683–697. https://doi.org/10.1051/lait:1997649

    Article  CAS  Google Scholar 

  6. Singh TK, Fox PF, Hojrup P, Healy A (1994) A scheme for the fractionation of cheese nitrogen and identification of principal peptides. Int Dairy J 4(2):111–122. https://doi.org/10.1016/0958-6946(94)90063-9

    Article  Google Scholar 

  7. Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tag. Anal Chem 66(24):4390–4399. https://doi.org/10.1021/ac00096a002

    Article  CAS  PubMed  Google Scholar 

  8. Atanasova J, Moncheva P, Ivanova I (2014) Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk. Biotechnol Biotechnol Eq 28(6):1073–1078. https://doi.org/10.1080/13102818.2014.971487

    Article  CAS  PubMed  Google Scholar 

  9. Kuchroo CN, Fox PF (1983) A fractionation scheme for the water-soluble nitrogen in Cheddar cheese. Milchwissenschaft 38(7):389–391

    CAS  Google Scholar 

  10. Gobbetti M, de Angelis M, Corseti A, di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16(1–3):57–69. https://doi.org/10.1016/j.tifs.2004.02.013

    Article  CAS  Google Scholar 

  11. Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre column derivatization. J Chromat B: Biomed Sci Appl 336(1):93–104. https://doi.org/10.1016/S0378-4347(00)85133-6

    Article  CAS  Google Scholar 

  12. Dalgalarrondo M, Chobert JM, Dufour E, Bertrand Harb C, Dumont JP, Haertle T (1990) Characterisation of bovine β-lactoglobulin B tryptic peptides by reverse-phase high performance liquid chromatography. Milchwissenschaft 45(4):212–216

    CAS  Google Scholar 

  13. Hayaloglu AA, Guven M, Fox PF, Hannon JA, McSweeney PLH (2004) Proteolysis in Turkish white-brined cheese made with defined strains of Lactococcus. Int Dairy J 14(7):599–610. https://doi.org/10.1016/j.idairyj.2003.12.008

    Article  CAS  Google Scholar 

  14. Hayaloglu AA, McSweeney PLH (2014) Primary biochemical events during cheese ripening. Chapter 7, In: Dairy microbiology and biochemistry, Ozer B, Akdemir-Evrendilek G (Ed.). p. 464. CRC Press, Boca Raton, FL, USA. https://doi.org/10.1201/b17297

  15. Freitas AC, Fresno JM, Prieto B, Malkata FX, Carballo J (1997) Effects of ripening time and combination of ovine and caprine milks on proteolysis of Picante cheese. Food Chem 60(2):219–229. https://doi.org/10.1016/S0308-8146(96)00323-8

    Article  CAS  Google Scholar 

  16. Izco JM, Irigoyen A, Torre P, Barcina Y (2000) Effect of the activity levels of the added proteolytic enzyme mixture on free amino acids in ripening Ossau-Iraty cheese. J Chromatogr A 881(1–2):69–79. https://doi.org/10.1016/s0021-9673(00)00285-5

    Article  CAS  PubMed  Google Scholar 

  17. Tavaria FK, Franco I, Carballo FJ, Malkata FX (2003) Amino acid and soluble nitrogen evolution throughout ripening of Serra de Estrela cheese. Int Dairy J 13(7):537–545. https://doi.org/10.1016/S0958-6946(03)00060-8

    Article  CAS  Google Scholar 

  18. Pino A, Prados F, Galan E, McSweeney PLH, Fernandez-Salguero J (2009) Proteolysis during the ripening of goats’ milk cheese made with plant coagulant or calf rennet. Food Res Int 42(3):324–330. https://doi.org/10.1016/j.foodres.2008.12.009

    Article  CAS  Google Scholar 

  19. Pappa EC, Tsirakoglu K (2008) Changes of free amino acid content of Teleme cheese made with different types of milk and culture. Food Chem 111(3):606–615. https://doi.org/10.1016/j.foodchem.2008.04.027

    Article  CAS  Google Scholar 

  20. Franco I, Prieto B, Bernardo A, Gonzaґlez Prieto J, Carballo J (2003) Biochemical changes throughout the ripening of a traditional Spanish goat cheese variety (Babia-Laciana). Int Dairy J 13(2–3):221–230. https://doi.org/10.1016/S0958-6946(02)00154-1

    Article  CAS  Google Scholar 

  21. Frau M, Massanet J, Rosello C, Simal S, Canelas J (1997) Evolution of free amino acid content during ripening of Mahon cheese. Food Chem 60(4):651–657. https://doi.org/10.1016/S0308-8146(97)00051-4

    Article  CAS  Google Scholar 

  22. Fox PF, Law J, McSweeney PLH, Wallace J (1993) Cheese: chemistry, physics and microbiology, Vol. 1, 2nd edition, Fox PF (Ed.). pp. 303-340; 389-438. Chapman and Hall, London, UK

  23. Garcia-Palmer J, Serra N, Palou A, Gianotti M (1997) Free amino acids as indices of Mahón cheese ripening. J Dairy Sci 80:1908–1917. https://doi.org/10.3168/jds.S0022-0302(97)76131-9

  24. Poveda JM, Sousa MJ, Cabezas L, McSweeney PLH (2003) Preliminary observations on proteolysis in Manchego cheese made with a defined-strain starter culture and adjunct starter (Lactobacillus plantarum) or a commercial starter. Int Dairy J 13(2-3):169-178. https://doi.org/10.1016/S0958-6946(02)00150-4

    Article  CAS  Google Scholar 

  25. Poveda JM, Cabezas L, McSweeney PLH (2004) Free amino acid content of Manchego cheese manufactured with different starter cultures and changes throughout ripening. Food Chem 84(2):213-218. https://doi.org/10.1016/S0308-8146(03)00204-8

    Article  CAS  Google Scholar 

  26. Puchades R, Lemieux L, Simard RE (1989) Evolution of free amino acids during the ripening of cheddar cheese containing added lactobacilli strains. J Food Sci 54(4):885-888. https://doi.org/10.1111/j.1365-2621.1989.tb07905.x

    Article  CAS  Google Scholar 

  27. Fox PF, O’Connor TP, McSweeney PLH (1996) Cheese: physical, biochemical and nutritional aspects. Adv Food Nutr 39:163-328. https://doi.org/10.1016/S1043-4526(08)60075-3

    Article  CAS  Google Scholar 

  28. Meisel H, Bockelmann W (1999) Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 76(1-4):207-215. https://doi.org/10.1023/A:1002063805780

    Article  CAS  PubMed  Google Scholar 

  29. Lahov E, Regelson W (1996) Antibacterial and stimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 34(1):131-145. https://doi.org/10.1016/0278-6915(95)00097-6

    Article  CAS  PubMed  Google Scholar 

  30. Recio I, Quiros A, Hernandes-Ledesma B, Gomez-Ruiz JA, Miguel M, Amigo L, Lopez-Exposito I, Ramos M, Alexandre A (2005) Bioactive peptides identified in enzyme hydrolysates from milk caseins and procedure for their obtention. European Patent 2005011373

  31. Dziuba M, Dziuba B, Iwaniak A (2009) Milk proteins as precursors of bioactive peptides. Acta Sci Pol Technol Aliment 8(1):71-90

    CAS  Google Scholar 

  32. Fitz Gerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84:33-37. https://doi.org/10.1017/S0007114500002221

    Article  Google Scholar 

  33. McCann KB, Shiell BJ, Michalski WP, Lee A, Wan J, Roginski H, Coventry MJ (2006) Isolation and characterization of a novel antibacterial peptide from bovine alpha(s1)-casein. Int Dairy J 16:316-323. https://doi.org/10.1016/j.idairyj.2005.05.005

    Article  CAS  Google Scholar 

  34. Lopez-Exposito I, Gomez-Ruiz JA, Amigo L, Recio I (2006) Identification of antibacterial peptides from ovine αs2-casein. Int Dairy J 16(9):1072-1080. https://doi.org/10.1016/j.idairyj.2005.10.006

    Article  CAS  Google Scholar 

  35. Silva SV, Malcata FX (2005) Caseins as source of bioactive peptides. Int Dairy J 15(1):1-15. https://doi.org/10.1016/j.idairyj.2004.04.009

    Article  CAS  Google Scholar 

  36. Sieber R (2005) Kase - ein wertvolles lebensmittel in der menschlichen Ernahrung. Mitt Lebensm Hyg 96:141-170

    CAS  Google Scholar 

  37. Guerrero L, Castillo J, Quinones M, Garcia-Vallve S, Arola L, Pujadas G, Maguerza B (2012) Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One 7(11):e49493. https://doi.org/10.1371/journal.pone.0049493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coste M, Rochet V, Leonil J, Molle D, Bouhallab S, Tome D (1992) Identification of C-terminal peptides from bovine b-casein that enhance proliferation of rat lymphocytes. Immun Lett 33(1):41-46. https://doi.org/10.1016/0165-2478(92)90091-2

  39. Smacchi E, Gobbetti M (2000) Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiol 17(2):129-141. https://doi.org/10.1006/fmic.1999.0302

    Article  CAS  Google Scholar 

  40. Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effect. Curr Pharm Des 9(16):1289-1295. https://doi.org/10.2174/1381612033454847

    Article  CAS  PubMed  Google Scholar 

  41. Schlimme E, Meisel H (1995) Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Die Nahrung 39(1):1-20. https://doi.org/10.1002/food.19950390102

    Article  CAS  PubMed  Google Scholar 

  42. Migloire-Samour D, Floch F, Jollеes P (1989) Biologically active casein peptides implicated in immunomodulation. J Dairy Res 56(3):357-362. https://doi.org/10.1017/s0022029900028806

    Article  Google Scholar 

  43. Meisel H, Doepfer A, Gunther S (1997) ACE-inhibitory activities in milk products. Milchwissenschaft 52:307-311

    CAS  Google Scholar 

  44. Sieber R, Butikofer U, Egger C, Portmann R, Walther B, Weshler D (2010) ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci Technol 90:47-73. https://doi.org/10.1051/dst/2009049

    Article  CAS  Google Scholar 

  45. Rizzello CG, Losito I, Gobbetti M, Carbonara T, De Bari MD, Zambonin PG (2005) Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J. Dairy Sci 88(7):2348-2360. https://doi.org/10.3168/jds.S0022-0302(05)72913-1

    Article  CAS  PubMed  Google Scholar 

  46. Gomez-Ruiz JÁ, Taborda G, Amigo L, Ramos M, Molina E (2007) Sensory and mass spectrometric analysis of the peptidic fraction lower than one thousand daltons in Manchego cheese. J Dairy Sci 90(11):4966-4973. https://doi.org/10.3168/jds.2007-0350

    Article  CAS  PubMed  Google Scholar 

  47. Ong L, Shah NP (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheese. LWT Food Sci Technol 41(9):1555-1566. https://doi.org/10.1016/j.lwt.2007.11.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav D. Todorov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanasova, J., Dalgalarrondo, M., Iliev, I. et al. Formation of Free Amino Acids and Bioactive Peptides During the Ripening of Bulgarian White Brined Cheeses. Probiotics & Antimicro. Prot. 13, 261–272 (2021). https://doi.org/10.1007/s12602-020-09669-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09669-0

Keywords

Navigation