Skip to main content
Log in

High H-atom Density in R(He,Ar)/x%(N2–5%H2) Early Afterglows

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Absolute densities of N atoms and N2(A) molecules and estimated densities of H atoms and N2(X,v > 13) and NH molecules are determined in R(He,Ar)/x%(N2–5%H2) flowing microwave discharges by a band intensity ratio method after calibration of the N atom density by NO titration. By varying the plasma parameters: pressure of 8 and 4 Torr, flow rates of 0.5, 1.0 and 2.0 slpm, HF power up to 150 W, a high N + N recombination fraction (> 80%) has been observed with He dilution in the early afterglow (t = 5 × 10–3 s). A maximum value of the H-atom density has been found in the He/2%(N2–5%H2) gas mixture at 8 Torr, 0.5 slpm and 150 W, with a [H]/[N] ratio of 0.3. With Ar dilution, it is found that the Ar/5%(N2–5%H2) gas mixture at 4 Torr, 0.5 slpm, 100 W brought a high H2 dissociation (80%), with a [H]/[N] ratio of about 0.6. From the variation of the H-atom density along the quartz tube, the wall destruction probability of the H-atoms was calculated to be \({\gamma }_{H}^{He}\) = \({\gamma }_{H}^{Ar}\)  = (1–4) × 10–3 in helium and argon mixtures. Such results are of interest for the enhancement of surface nitriding by the combined effects of N and H atoms inclusion inside a TiO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wang Y, Ricard A, Sarrette JP, Kim A, Kim YK (2017) Surf Coat Technol 324:243

    Article  CAS  Google Scholar 

  2. Ryu S, Wang Y, Ricard A, Sarrette JP, Kim A, Kim YK (2019) Surf Coat Technol 364:341

    Article  CAS  Google Scholar 

  3. Zerrouki H, Ricard A, Sarrette JP (2013) Contrib Plasma Phys 53:599

    Article  CAS  Google Scholar 

  4. Zerrouki H, Ricard A, Sarrette JP (2014) Contrib Plasma Phys 54:827

    Article  CAS  Google Scholar 

  5. Zerrouki H, Ricard A, Sarrette JP (2014) J Phys: Conf Series 550:012045

    Google Scholar 

  6. Ricard A, Sarrette JP (2019) J Phys: Conf Series 1243:012001

    CAS  Google Scholar 

  7. Ricard A, Sarrette JP (2019) Plasma Chem Plasma Process 39:1103

    Article  CAS  Google Scholar 

  8. Ricard A, Sarrette JP (2019) Plasma Chem Plasma Process 39:1357

    Article  CAS  Google Scholar 

  9. Piper LG (1994) J Chem Phys 101:10229

    Article  CAS  Google Scholar 

  10. Tatarova E, Dias FM, Gordiets B, Ferreira CM (2005) Plasma Sources Sci Technol 14:19

    Article  CAS  Google Scholar 

  11. Gordiets B, Ferreira CM, Pinheiro MJ, Ricard A (1998) Plasma Sources Sci Technol 7:363

    Article  CAS  Google Scholar 

  12. Amorim J, Kiohara V (2004) Chem Phys Letters 385:268

    Article  CAS  Google Scholar 

  13. Volynets AV, Lopaev DV, Rakhimova TV, Chukalovsky AA, Mankelevich YA, Popov NA, Zotovich AI, Rakhimov AT (2018) J Phys D 51:364002

    Article  Google Scholar 

  14. Rouffet B, Gaboriau F, Sarrette JP (2010) J Phys D 43:185203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ricard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricard, A., Amorim, J., Abdeladim, M. et al. High H-atom Density in R(He,Ar)/x%(N2–5%H2) Early Afterglows. Plasma Chem Plasma Process 40, 1351–1363 (2020). https://doi.org/10.1007/s11090-020-10092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10092-0

Keywords

Navigation