Skip to main content
Log in

Dark response genes: a group of endogenous pendulum/timing players in maize?

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Maize has a set of dark response genes, expression of which is influenced by multiple factor and varies with maize inbred lines but without germplasm specificity.

Abstract

The response to photoperiod is a common biological issue across the species kingdoms. Dark is as important as light in photoperiod. However, further in-depth understanding of responses of maize (Zea mays) to light and dark transition under photoperiod is hindered due to the lack of understanding of dark response genes. With multiple public “-omic” datasets of temperate and tropical/subtropical maize, 16 maize dark response genes, ZmDRGs, were found and had rhythmic expression under dark and light–dark cycle. ZmDRGs 68 were tandemly duplicated. ZmDRGs 2, 13, and 14 had a chromosomal collinearity with other maize genes. ZmDRGs 111 and 1316 had copy-number variations. ZmDRGs 2, 9, and 16 showed 5′-end sequence deletion mutations. Some ZmDRGs had chromatin interactions and underwent DNA methylation and/or m6A mRNA methylation. Chromosomal histones associated with 15 ZmDRGs were methylated and acetylated. ZmDRGs 1, 2, 4, 9, and 13 involved photoperiodic phenotypes. ZmDRG16 was within flowering-related QTLs. ZmDRGs 1, 3, and 611 were present in cis-acting expression QTLs (eQTLs). ZmDRGs 1, 4, 69, 11, 12, and 1416 showed co-expression with other maize genes. Some of ZmDRG-encoded ZmDRGs showed obvious differences in abundance and phosphorylation. Conclusion: Sixteen ZmDRGs 116 are associated with the dark response of maize. In the process of post-domestication and/or breeding, the ZmDRGs undergo the changes without germplasm specificity, including epigenetic modifications, gene copy numbers, chromatin interactions, and deletion mutations. In addition to effects by these factors, ZmDRG expression is influenced by promoter elements, cis-acting eQTLs, and co-expression networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNV:

Copy-number variation

DAP1:

Day after pollination

DAP2:

Day after planting

DRP:

Dark response protein

eQTLs:

cis-Acting expression QTLs

QTLs:

Quantitative trait loci

GO:

Gene Ontology

DL:

Dark–light

PDIs:

Promoter proximal–distal interactions

PPIs:

Promoter proximal interactions

TD:

Total dark

ZmDRG :

Maize dark response gene

ZmDRG:

ZmDRG-Encoded protein

References

  • Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21:974–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    PubMed  PubMed Central  Google Scholar 

  • Aoki K, Ogata Y, Shibata D (2007) Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48:381–390

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla V, Gomez-Ariza J, Cerise M, Fornara F (2017) The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front Plant Sci 8:665

    PubMed  PubMed Central  Google Scholar 

  • Chang YM, Lin HH, Liu WY, Yu CP, Chen HJ, Wartini PP, Kao YY, Wu YH, Lin JJ, Lu MY, Tu SL, Wu SH, Shiu SH, Ku MSB, Li WH (2019) Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Proc Natl Acad Sci USA 116:3091–3099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Xia R, Chen H, He Y (2018) A Toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv (Preprint March 27: 2018)

  • Chen MX, Wijethunge BDIK, Zhou SM, Yang JF, Dai L, Wang SS, Chen C, Fu LJ, Zhang J, Hao GF, Yang GF (2019) Chemical modulation of alternative splicing for molecular-target identification by potential genetic control in agrochemical research. J Agric Food Chem 67:5072–5084

    CAS  PubMed  Google Scholar 

  • Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S, Saunders CT (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220–1222

    CAS  PubMed  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    CAS  PubMed  Google Scholar 

  • Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M (2012) A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS ONE 7:e43450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr 5(3):788

    Google Scholar 

  • Feuerborn A, Cook PR (2015) Why the activity of a gene depends on its neighbors. Trends Genet 31:483–490

    CAS  PubMed  Google Scholar 

  • Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeling M, Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies rice starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832

    PubMed  Google Scholar 

  • Han X, Chang X, Zhang Z, Chen H, He H, Zhong B, Deng XW (2019) Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol Plant 12:847–862

    CAS  PubMed  Google Scholar 

  • Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON (2010) Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS ONE 5:e12887

    PubMed  PubMed Central  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217:109–119

    PubMed  Google Scholar 

  • Hoang QTN, Han YJ, Kim JI (2019) Plant phytochromes and their phosphorylation. Int J Mol Sci 20(14):3450

    CAS  PubMed Central  Google Scholar 

  • Hoopes GM, Hamilton JP, Wood JC, Esteban E, Pasha A, Vaillancourt B, Provart NJ, Buell CR (2019) An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J 97:1154–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou L, Zhang Z, Dou S, Zhang Y, Pang X, Li Y (2019) Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). Planta 249:815–829

    CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants—a dynamic affair. Biochim Biophys Acta 1769(5–6):308–315

    CAS  PubMed  Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA 109:E1913–E1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558

    CAS  PubMed  Google Scholar 

  • Jiang LG, Li B, Liu SX, Wang HW, Li CP, Song SH, Beatty M, Zastrow-Hayes G, Yang XH, Qin F, He Y (2019) Characterization of proteome variation during modern maize breeding. Mol Cell Proteom 18:263–276

    CAS  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045

    CAS  PubMed  Google Scholar 

  • Jończyk M, Sobkowiak A, Siedlecki P, Biecek P, Trzcinska-Danielewicz J, Tiuryn J, Fronk J, Sowiński P (2011) Rhythmic diel pattern of gene expression in juvenile maize leaf. PLoS ONE 6:e23628

    PubMed  PubMed Central  Google Scholar 

  • Khan S, Rowe SC, Harmon FG (2010) Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol 10:126

    PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86:391–402

    CAS  PubMed  Google Scholar 

  • Li YZ, Fan XW, Chen Q, Zhong H (2017) A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions. PLoS ONE 12:e0174003

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J (2017) Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol Plant 10:414–426

    CAS  PubMed  Google Scholar 

  • Liu J, Harada BT, He C (2019a) Regulation of gene expression by N6-methyladenosine in cancer. Trends Cell Biol 29:487–499

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang M, Marcora EM, Zhang B, Goate AM (2019b) Promoter DNA hypermethylation—implications for Alzheimer's disease. Neurosci Lett 711:134403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mascheretti I, Turner K, Brivio RS, Hand A, Colasanti J, Rossi V (2015) Florigen-encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol 168:1351–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23:942–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    CAS  PubMed  Google Scholar 

  • Miao Z, Zhang T, Qi Y, Song J, Han Z, Ma C (2019) Evolution of the RNA N6-methyladenosine methylome mediated by genomic duplication. Plant Physiol. https://doi.org/10.1104/pp.19.00323

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 130:627–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227:1377–1388

    CAS  PubMed  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    CAS  PubMed  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    CAS  PubMed  Google Scholar 

  • Oakenfull RJ, Davis SJ (2017) Shining a light on the Arabidopsis circadian clock. Plant Cell Environ 40:2571–2585

    CAS  PubMed  Google Scholar 

  • Peng Y, Xiong D, Zhao L, Ouyang W, Wang S, Sun J, Zhang Q, Guan P, Xie L, Li W, Li G, Yan J, Li X (2019) Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun 10:2632

    PubMed  PubMed Central  Google Scholar 

  • Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038

    CAS  PubMed  Google Scholar 

  • Polidoros AN, Scandalios JG (1997) Response of the maize catalases to light. Free Radic Biol Med 23:497–504

    CAS  PubMed  Google Scholar 

  • Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y (2019) Plant regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J. https://doi.org/10.1111/tpj.14526

    Article  PubMed  Google Scholar 

  • Regulski M, Lu Z, Kendall J, Donoghue MT, Reinders J, Llaca V, Deschamps S, Smith A, Levy D, McCombie WR, Tingey S, Rafalski A, Hicks J, Ware D, Martienssen RA (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23:1651–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee SY, Mutwil M (2014) Towards revealing the functions of all genes in plants. Trends Plant Sci 19:212–221

    CAS  PubMed  Google Scholar 

  • Serin EA, Nijveen H, Hilhorst HW, Ligterink W (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444

    PubMed  PubMed Central  Google Scholar 

  • Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91(Pt B):145–155

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot 114:1445–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X, Liu H, Ma X, Jiao Y, Wang B, Wei X, Stein JC, Glaubitz JC, Lu F, Yu G, Liang C, Fengler K, Li B, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai J (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295

    CAS  PubMed  Google Scholar 

  • Swart V, Crampton BG, Ridenour JB, Bluhm BH, Olivier NA, Meyer JJM, Berger DK (2017) Complementation of CTB7 in the maize pathogen Cercospora zeina overcomes the lack of in vitro cercosporin production. Mol Plant Microbe Interact 30:710–724

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  PubMed  Google Scholar 

  • Tian D, Wang P, Tang B, Teng X, Li C, Liu X, Zou D, Song S, Zhang Z (2019) GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz828

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer KF, Ordas B, Pausch H, Tellier A, Bauer E, Schön CC (2016) A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 17:137

    PubMed  PubMed Central  Google Scholar 

  • Vanderstraeten J, Gailly P, Malkemper EP (2018) Low-light dependence of the magnetic field effect on cryptochromes: possible relevance to plant ecology. Front Plant Sci 9:121

    PubMed  PubMed Central  Google Scholar 

  • Vu LD, Gevaert K, De Smet I (2018) Protein language: post-translational modifications talking to each other. Trends Plant Sci 23:1068–1080

    CAS  PubMed  Google Scholar 

  • Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP (2016) Integration of omic networks in a developmental atlas of maize. Science 353:814–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Kelly S, Fouracre JP, Langdale JA (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75:656–670

    CAS  PubMed  Google Scholar 

  • Wang Q, Zuo Z, Wang X, Liu Q, Gu L, Oka Y, Lin C (2018) Beyond the photocycle-how cryptochromes regulate photoresponses in plants? Curr Opin Plant Biol 45(Pt A):120–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Zhao Y, Shen R, Wang B, Xie Y, Ma X, Zheng Z, Wang H (2019) Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiol. https://doi.org/10.1104/pp.19.00239

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Tian L, Wang S, Zhang J, Liu P, Tian Z, Zhang H, Liu H, Chen Y (2016) Comparative proteomic analysis of the response of maize (Zea mays L.) leaves to long photoperiod condition. Front Plant Sci 7:752

    PubMed  PubMed Central  Google Scholar 

  • Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinform 10:232

    Google Scholar 

  • Yan S, Ni H, Li H, Zhang J, Liu X, Zhang Q (2013) Molecular cloning, characterization, and mRNA expression of two Cryptochrome genes in Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol 106:450–462

    CAS  PubMed  Google Scholar 

  • Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, Li W, Liu L, Jackson D, Yan J (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51:1052–1059

    CAS  PubMed  Google Scholar 

  • Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T, Li J, Chen Y, Yan J, Yang X, Xu M (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110:16969–16974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15:4–14

    CAS  PubMed  Google Scholar 

  • Yi F, Gu W, Chen J, Song N, Gao X, Zhang X, Zhou Y, Ma X, Song W, Zhao H, Esteban E, Pasha A, Provart NJ, Lai J (2019) High temporal-resolution transcriptome landscape of early maize seed development. Plant Cell 31:974–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    CAS  PubMed  Google Scholar 

  • Yue H, Nie X, Yan Z, Weining S (2019) N6-Methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol J 17:1194–1208

    PubMed  PubMed Central  Google Scholar 

  • Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H (2019) Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci 20(6):1268

    CAS  PubMed Central  Google Scholar 

  • Zhang M, Wang L, Zhong D (2017) Photolyase: dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys 632:158–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Xie S, Dong X, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J (2014a) Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res 24:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Chen S, Harmon AC (2014b) Protein phosphorylation in stomatal movement. Plant Signal Behav 9:e972845

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Natural Science Fund Project (2017GXNSFEA198003) and the Science and Technology Major Project of Guangxi (Guike AA17204064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Zhi Li.

Ethics declarations

Conflict of interest

We state no conflict of interest with others.

Ethical statement

Our work complies with the ethical rules applicable for this journal.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material 

Supplementary file1 (DOCX 36 kb)

Supplementary file2 (DOCX 24 kb)

Supplementary file3 (DOCX 19 kb)

Supplementary file4 (DOCX 18 kb)

Supplementary file5 (DOCX 26 kb)

Supplementary file6 (DOCX 137 kb)

Supplementary file7 (DOCX 20 kb)

Supplementary file8 (DOCX 18 kb)

Supplementary file9 (DOCX 27 kb)

Supplementary file10 (DOCX 27 kb)

Supplementary file11 (DOCX 19 kb)

Supplementary file12 (DOCX 22 kb)

Supplementary file13 (DOCX 74 kb)

Supplementary file14 (DOCX 30 kb)

Supplementary file15 (DOCX 52 kb)

Supplementary file16 (DOCX 17 kb)

Supplementary file17 (PPTX 685 kb)

Supplementary file18 (PPTX 1587 kb)

Supplementary file19 (PPTX 899 kb)

Supplementary file20 (PPTX 1401 kb)

Supplementary file21 (PPTX 100 kb)

Supplementary file22 (PPTX 1010 kb)

Supplementary file23 (PPTX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, MY., Lei, L., Fan, XW. et al. Dark response genes: a group of endogenous pendulum/timing players in maize?. Planta 252, 1 (2020). https://doi.org/10.1007/s00425-020-03403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03403-4

Keywords

Navigation