Skip to main content
Log in

Ni-Doped SnO2 Dilute Magnetic Semiconductors: Morphological Characteristics and Optical and Magnetic Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ni-doped SnO2 dilute magnetic semiconductors were prepared by precipitation method. The obtained spherical nanoparticles are pure tetragonal rutile phase, and Ni ions promote the growth of SnO2 nanoparticles. The optical band gap energy of the SnO2 nanoparticles decreases from 3.14 to 2.84 eV when input x% Ni. The room-temperature photoluminescence (PL) spectra and X-ray photoelectron spectroscopy (XPS) confirm the existence of surface oxygen vacancies caused by the large specific surface area and the introduction of Ni ions. All the synthesized Ni-doped SnO2 nanoparticles achieve room-temperature ferromagnetism, with a saturation magnetization of up to 2.95 × 10−3 emu/g at a dopant concentration of 2%. The interaction between oxygen vacancies and Ni2+ realizes the magnetic transition of nanoparticles from diamagnetic to ferromagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garnet, N.S., Ghodsi, V., Hutfluss, L.N., Yin, P., Hegde, M., Radovanovic, P.V.: Probing the role of dopant oxidation state in the magnetism of diluted magnetic oxides using Fe-doped In2O3 and SnO2 nanocrystals. J. Phys. Chem. C. 121(3), 1918–1927 (2017)

    Google Scholar 

  2. Novak, V., Olejnik, K., Wunderlich, J., Cukr, M., Vyborny, K., Rushforth, A.W., Edmonds, K.W., Campion, R.P., Gallagher, B.L., Sinova, J., Jungwirth, T.: Curie point singularity in the temperature derivative of resistivity in (Ga,Mn)As. Phys. Rev. Lett. 101(7), 077201 (2008)

    ADS  Google Scholar 

  3. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291(5505), 854–856 (2001)

    ADS  Google Scholar 

  4. Singhal, A., Achary, S.N., Manjanna, J., Chatterjee, S., Ayyub, P., Tyagi, A.K.: Chemical synthesis and structural and magnetic properties of dispersible cobalt- and nickel-doped ZnO nanocrystals. J. Phys. Chem. C. 114(8), 3422–3430 (2010)

    Google Scholar 

  5. Doke, S., Sonawane, K., Banerjee, A., Mahamuni, S.: Evidence of various stabilizing mechanisms in ferromagnetic Co doped ZnO nanocrystals. J. Alloys Compd. 726, 947–954 (2017)

    Google Scholar 

  6. Yang, Z.G., Zhao, Z.J., Yu, J.B., Li, J.Y., Ren, Z.M., Ma, S.Q., Ren, S.X., Yu, G.: Effect of Co substitution and magnetic field on the morphologies and magnetic properties of CeO2 nanoparticles. Ceram. Int. 45(9), 11927–11933 (2019)

    Google Scholar 

  7. Luo, X., Tseng, L.T., Wang, Y.R., Bao, N.N., Lu, Z.M., Ding, X., Zheng, R.K., Du, Y.H., Huang, K., Shu, L., Suter, A., Lee, W.T., Liu, R., Ding, J., Suzuki, K., Prokscha, T., Morenzoni, E., Yi, J.B.: Intrinsic or Interface clustering-induced ferromagnetism in Fe-doped In2O3-diluted magnetic semiconductors. ACS Appl. Mater. Interfaces. 10(26), 22372–22380 (2018)

    Google Scholar 

  8. Archer, P.I., Radovanovic, P.V., Heald, S.M., Gamelin, D.R.: Low-temperature activation and deactivation of high-curie-temperature ferromagnetism in a new diluted magnetic semiconductor: Ni2+-doped SnO2. J. Am. Chem. Soc. 127(41), 14479–14487 (2005)

    Google Scholar 

  9. Jiang, Q., Zhang, X.W., You, J.B.: SnO2 : a wonderful electron transport layer for perovskite solar cells. Small. 14(31), e1801154 (2018)

    Google Scholar 

  10. Kuang, Q., Lao, C.S., Wang, Z.L., Xie, Z.X., Zheng, L.S.: High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129(19), 6070–6071 (2007)

    Google Scholar 

  11. Zhang, S.Y., Yin, C.B., Yang, L., Zhang, Z.L., Han, Z.J.: Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film. Sensors Actuators B Chem. 283, 399–406 (2019)

    Google Scholar 

  12. Chu, D.Q., Zhu, S.P., Wang, L.M., Wang, G.W., Zhang, N.: Hydrothermal synthesis of hierarchical flower-like Zn-doped SnO2 architectures with enhanced photocatalytic activity. Mater. Lett. 224, 92–95 (2018)

    Google Scholar 

  13. Rahman, G., García-Suárez, V.M., Hong, S.C.: Vacancy-induced magnetism in SnO2: a density functional study. Phys. Rev. B. 78, 184404 (2008)

    ADS  Google Scholar 

  14. Mehraj, S., Ansari, M.S., Al-Ghamdi, A.A.: Alimuddin: annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 171, 109–118 (2016)

    Google Scholar 

  15. Zhang, L., Ge, S.H., Zuo, Y.L., Zhang, B.M., Xi, L.: Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures. J. Phys. Chem. C. 114(17), 7541–7547 (2010)

    Google Scholar 

  16. Srinivas, K., Rao, S.M., Reddy, P.V.: Structural, electronic and magnetic properties of Sn0.95Ni0.05O2 nanorods. Nanoscale. 3(2), 642–653 (2011)

    ADS  Google Scholar 

  17. Sharma, M., Naji Aljawfi, R., Kumari, K., Chae, K.H., Dalela, S., Gautam, S., Alvi, P.A., Kumar, S.: Investigation of local geometrical structure, electronic state and magnetic properties of PLD grown Ni doped SnO2 thin films. J. Electron. Spectrosc. Relat. Phenom. 232, 21–28 (2019)

    Google Scholar 

  18. Verma, K.C., Kotnala, R.K.: Realizing ferromagnetic ordering in SnO2 and ZnO nanostructures with Fe, Co, Ce ions. Phys. Chem. Chem. Phys. 18(26), 17565–17574 (2016)

    Google Scholar 

  19. Aragón, F.H., Coaquira, J.A.H., Hidalgo, P., da Silva, S.W., Brito, S.L.M., Gouvêa, D., Morais, P.C.: Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J. Raman Spectrosc. 42(5), 1081–1086 (2011)

    ADS  Google Scholar 

  20. Subramanyam, K., Sreelekha, N., Murali, G., Reddy, D.A., Vijayalakshmi, R.P.: Structural, optical and magnetic properties of Cr doped SnO2 nanoparticles stabilized with polyethylene glycol. Physica B. 454, 86–92 (2014)

    ADS  Google Scholar 

  21. Selvi, E.T., Sundar, S.M.: Popcorn like morphology and absence of room temperature ferromagnetism in Ni doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 29(1), 38–48 (2018)

    Google Scholar 

  22. Mazloom, J., Ghodsi, F.E., Golmojdeh, H.: Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities. J. Alloys Compd. 639, 393–399 (2015)

    Google Scholar 

  23. Ahmed, A., Ali, T., Naseem Siddique, M., Ahmad, A., Tripathi, P.: Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: a comprehensive study. J. Appl. Phys. 122(8), 083906 (2017)

    ADS  Google Scholar 

  24. Bouaine, A., Brihi, N., Schmerber, G., Ulhaq-Bouillet, C., Colis, S., Dinia, A.: Structural, optical, and magnetic properties of co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C. 111(7), 2924–2928 (2007)

    Google Scholar 

  25. Yang, H.M., Du, C.F., Jin, S.M., Tang, A.D., Li, G.S.: Enhanced photoluminescence property of SnO2 nanoparticles contained in mesoporous silica synthesized with leached talc as Si source. Microporous Mesoporous Mater. 102(1–3), 204–211 (2007)

    Google Scholar 

  26. Chetri, P., Saikia, B., Choudhury, A.: Structural and optical properties of cu doped SnO2 nanoparticles: an experimental and density functional study. J. Appl. Phys. 113(23), 233514 (2013)

    ADS  Google Scholar 

  27. Kar, A., Patra, A.: Optical and electrical properties of Eu3+-doped SnO2 Nanocrystals. J. Phys. Chem. C. 113(11), 4375–4380 (2009)

    Google Scholar 

  28. Gu, F., Wang, S.F., Lü, M.K., Zhou, G.J., Xu, D., Yuan, D.R.: Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method. J. Phys. Chem. B. 108(24), 8119–8123 (2004)

    Google Scholar 

  29. Kumari, M., Mondal, S., Madhuri, R., Sharma, P.K.: Synthesis of single phase FexSn1−xO2 nanoparticles with enhanced structural, optical and magnetic properties. J. Alloys Compd. 717, 260–270 (2017)

    Google Scholar 

  30. Tan, Q.K., Kong, Z., Chen, X.J., Zhang, L., Hu, X.Q., Mu, M.X., Sun, H.C., Shao, X.C., Guan, X.G., Gao, M., Xu, B.H.: Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries. Appl. Surf. Sci. 485, 314–322 (2019)

    ADS  Google Scholar 

  31. Choi, J.H., Park, S.-K., Kang, Y.C.: Superior lithium-ion storage performances of SnO2 powders consisting of hollow nanoplates. J. Alloys Compd. 797, 380–389 (2019)

    Google Scholar 

  32. Bhardwaj, N., Satpati, B., Mohapatra, S.: Plasmon-enhanced photoluminescence from SnO2 nanostructures decorated with Au nanoparticles. Appl. Surf. Sci. 504, 144381 (2020)

  33. Ahmed, A., Siddique, M.N., Ali, T., Tripathi, P.: Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl. Surf. Sci. 483, 463–471 (2019)

    ADS  Google Scholar 

  34. Chetri, P., Choudhury, B., Choudhury, A.: Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study. J. Mater. Chem. C. 2(43), 9294–9302 (2014)

    Google Scholar 

  35. Parveen, N., Cho, M.H.: Self-assembled 3D flower-like nickel hydroxide nanostructures and their Supercapacitor applications. Sci. Rep. 6, 27318 (2016)

    ADS  Google Scholar 

  36. Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R.: Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1(1), 29–33 (2011)

    Google Scholar 

  37. Jahnavi, V.S., Tripathy, S.K., Ramalingeswara Rao, A.V.N.: Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications. Physica B. 565, 61–72 (2019)

    ADS  Google Scholar 

  38. Maensiri, S., Pinitsoontorn, S., Phokha, S.: Structure and magnetic properties of Monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett. 5(4), 223–233 (2013)

    Google Scholar 

  39. Sonsupap, S., Ponhan, W., Wongsaprom, K.: Synthesis and room-temperature ferromagnetism in Co-doped In2O3 nanoparticles. J. Supercond. Nov. Magn. 29(6), 1641–1646 (2016)

    Google Scholar 

  40. Pascariu, P., Airinei, A., Grigoras, M., Fifere, N., Sacarescu, L., Lupu, N., Stoleriu, L.: Structural, optical and magnetic properties of Ni doped SnO2 nanoparticles. J. Alloys Compd. 668, 65–72 (2016)

    Google Scholar 

  41. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173–179 (2005)

    ADS  Google Scholar 

  42. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84(8), 1332–1334 (2004)

    ADS  Google Scholar 

  43. Wang, H.X., Yan, Y., Du, X.B., Liu, X.Q., Li, K., Jin, H.M.: Origin of ferromagnetism in Ni-doped SnO2: first-principles calculation. J. Appl. Phys. 107(10), 103923 (2010)

    ADS  Google Scholar 

  44. Aragon, F.H., Coaquira, J.A., Hidalgo, P., Brito, S.L., Gouvea, D., Castro, R.H.: Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J. Phys. Condens. Matter. 22(49), 496003 (2010)

    Google Scholar 

  45. Manikandan, D., Boukhvalov, D.W., Amirthapandian, S., Zhidkov, I.S., Kukharenko, A.I., Cholakh, S.O., Kurmaev, E.Z., Murugan, R.: An insight into the origin of room-temperature ferromagnetism in SnO2 and Mn-doped SnO2 quantum dots: an experimental and DFT approach. Phys. Chem. Chem. Phys. 20(9), 6500–6514 (2018)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21571018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Peng, L. & Liu, T. Ni-Doped SnO2 Dilute Magnetic Semiconductors: Morphological Characteristics and Optical and Magnetic Properties. J Supercond Nov Magn 33, 3051–3058 (2020). https://doi.org/10.1007/s10948-020-05533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05533-y

Keywords

Navigation