Skip to main content
Log in

Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, nickel cobaltite/mesoporous carbon composites are synthesized by reacting CoCl2, Ni (NO3)2 and nitric acid-treated biogas slurry mesoporous carbon using urea as hydrolyzing agent and hexadecyltrimethylammonium bromide (CTAB) as surfactant. The presence of Ni, Co, C and O peaks in the EDX results confirm that the composites are successfully synthesized. Interestingly at 350 °C, the composite surface morphology switched to cross-linked nanoflake structures interconnected with mesoporous carbon. The X-ray diffraction analysis of the NiCo2O4/mesoporous carbon composites reveals that the spinel structure of the NiCo2O4 is maintained in the composites. The nitrogen uptake increases with increasing annealing temperature to 300 °C then decreases at higher temperature (400 °C). The type IV isotherms are exhibited by all the composites. The contribution of mesopores increases with increasing annealing temperature: 32% for BC-NCo-200, 41% for BC-NCo-250, 56% for BC-NCo-300, 66% for BC-NCo-350 and 86% for BC-NCo-400. The NiCo2O4/mesoporous carbon composites exhibit high specific capacitance of 835 F g−1 at scan rate of 5 mV s−1 for sample annealed at 350 °C. The cyclic stabilities of the electrodes are above 90% after 50,000 cycles indicating that the synthesized composites are suitable candidates for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, Ou-Yang W, Xu X, Wang M, Hou S, Lu T, Yao Y, Pan L (2018) Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochim Acta 271:591–598

    Article  CAS  Google Scholar 

  2. Wang Y-M, Zhang X, Guo C-Y, Zhao Y-Q, Xu C-L, Li H-L (2013) Controllable synthesis of 3D Ni χ Co 1− χ oxides with different morphologies for high-capacity supercapacitors. J Mater Chem A 1(42):13290–13300

    Article  CAS  Google Scholar 

  3. Kibona TE, Shao GN, Kim HT, King’ondu CK (2019) Specific capacitance–pore texture relationship of biogas slurry mesoporous carbon/MnO2 composite electrodes for supercapacitors. Nano-Structures Nano-Objects 17:21–33

    Article  CAS  Google Scholar 

  4. El-Khodary S, Yahia I, Zahran H, Ibrahim M (2019) Preparation of polypyrrole-decorated MnO2/reduced graphene oxide in the presence of multi-walled carbon nanotubes composite for high performance asymmetric supercapacitors. Phys B Condens Matter 556:66–74

    Article  CAS  Google Scholar 

  5. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25(14):1993–1998

    Article  CAS  PubMed  Google Scholar 

  6. Sun J, Niu J, Liu M, Ji J, Dou M, Wang F (2018) Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci 427:807–813

    Article  CAS  Google Scholar 

  7. Yang C-S, Jang YS, Jeong HK (2014) Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 14(12):1616–1620

    Article  Google Scholar 

  8. Zhu B, Liu B, Qu C, Zhang H, Guo W, Liang Z, Chen F, Zou R (2018) Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. J Mater Chem A 6(4):1523–1530

    Article  CAS  Google Scholar 

  9. Enock TK, King’ondu CK, Pogrebnoi A, Jande YAC (2017) Biogas-slurry derived mesoporous carbon for supercapacitor applications. Mater Today Energy 5:126–137

    Article  Google Scholar 

  10. Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47(8):2680–2721

    Article  CAS  PubMed  Google Scholar 

  11. G-l Z, J-q B, X-y T, Luo J-m, Zhou X, W-x C, Zhong X, X-n L, Wang J-g (2018) Trace phosphorus− doping significantly improving S-content of binary− doped mesoporous carbon network with enhancing electrochemical performance. Microporous Mesoporous Mater 256:75–83

    Article  CAS  Google Scholar 

  12. Thirumal V, Pandurangan A, Jayavel R, Krishnamoorthi S, Ilangovan R (2016) Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications. Curr Appl Phys 16(8):816–825

    Article  Google Scholar 

  13. Lee YJ, Jung JC, Park S, Seo JG, Baeck S-H, Yoon JR, Yi J, Song IK (2010) Preparation and characterization of metal-doped carbon aerogel for supercapacitor. Curr Appl Phys 10(3):947–951

    Article  Google Scholar 

  14. Park D-W, Canas NA, Schwan M, Milow B, Ratke L, Friedrich KA (2016) A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Curr Appl Phys 16(6):658–664

    Article  Google Scholar 

  15. Sridhar D, Meunier J-L, Omanovic S (2019) Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes. Mater Chem Phys 223:434–440

    Article  CAS  Google Scholar 

  16. Zheng K, Li Y, Zhu M, Yu X, Zhang M, Shi L, Cheng J (2017) The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. J Power Sources 366:270–277

    Article  CAS  Google Scholar 

  17. Zhang G, Lou XWD (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3(1):1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tiruneh SN, Kang BK, Kwag SH, Humayoun UB, Yoon DH (2018) Nickel cobalt sulfide anchored in crumpled and porous graphene framework for electrochemical energy storage. Curr Appl Phys 18:S37–S43

    Article  Google Scholar 

  19. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605

    Article  CAS  Google Scholar 

  20. Wang H, Gao Q, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17):2454–2459

    CAS  PubMed  Google Scholar 

  21. Wu Z, Zhu Y, Ji X (2014) NiCo 2 O 4-based materials for electrochemical supercapacitors. J Mater Chem A 2(36):14759–14772

    Article  CAS  Google Scholar 

  22. Li Y, Hou X, Zhang Z, Hai Z, Xu H, Cui D, Zhuiykov S, Xue C (2018) NiCo 2 O 4 particles with diamond-shaped hexahedron structure for high-performance supercapacitors. Appl Surf Sci 436:242–251

    Article  CAS  Google Scholar 

  23. Chen Y, Gan H, Guan J-H, Cao L-T (2018) A novel two-step approach to fabricating nanofibrous nickel cobaltite for high performance supercapacitors. J Alloys Compd 760:6–14

    Article  CAS  Google Scholar 

  24. Cui L, Huang L, Ji M, Wang Y, Shi H, Zuo Y, Kang S (2016) High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: preparation and application as binder-free electrode for pseudo-supercapacitor. J Power Sources 333:118–124

    Article  CAS  Google Scholar 

  25. Xu J, Sun Y, Lu M, Wang L, Zhang J, Tao E, Qian J, Liu X (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 152:162–174

    Article  CAS  Google Scholar 

  26. Abbasi L, Arvand M (2018) Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl Surf Sci 445:272–280

    Article  CAS  Google Scholar 

  27. Cheng J, Lu Y, Qiu K, Yan H, Hou X, Xu J, Han L, Liu X, Kim J-K, Luo Y (2015) Mesoporous ZnCo 2 O 4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. PCCP 17(26):17016–17022

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran T, Hamed F (2018) Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications. J Phys Chem Solids 121:93–101

    Article  CAS  Google Scholar 

  29. Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo 2 O 4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36

    Article  CAS  Google Scholar 

  30. Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18(9):1440–1447

    Article  CAS  Google Scholar 

  31. Dalvi AD, Bacon WG, Osborne RC The past and the future of nickel laterites. In: Prospectors and Developers Association of Cannad (2004) International convention, trade show and investors exchange, 2004. The prospectors and Developers Association of Canada, Toronto, pp 1–27

    Google Scholar 

  32. Wang H, Holt CM, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5(9):605–617

    Article  CAS  Google Scholar 

  33. Chien HC, Cheng WY, Wang YH, Lu SY (2012) Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv Funct Mater 22(23):5038–5043

    Article  CAS  Google Scholar 

  34. Zhang D, Yan H, Lu Y, Qiu K, Wang C, Tang C, Zhang Y, Cheng C, Luo Y (2014) Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors. Nanoscale Res Lett 9(1):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi S, Wan G, Wu L, He Z, Wang K, Tang Y, Xu X, Wang G (2019) Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes. J Colloid Interface Sci 537:142–150

    Article  CAS  PubMed  Google Scholar 

  36. Chang S-K, Zainal Z, Tan K-B, Yusof NA, Yusoff WMDW, Prabaharan S (2012) Nickel–cobalt oxide/activated carbon composite electrodes for electrochemical capacitors. Curr Appl Phys 12(6):1421–1428

    Article  Google Scholar 

  37. Mohajernia S, Hejazi S, Mazare A, Nguyen NT, Hwang I, Kment S, Zoppellaro G, Tomanec O, Zboril R, Schmuki P (2017) Semimetallic core-shell TiO 2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO 2 supercapacitors. Mater Today Energy 6:46–52

    Article  Google Scholar 

  38. Enock TK, King'ondu CK, Pogrebnoi A (2018) Effect of biogas-slurry pyrolysis temperature on specific capacitance. Materials Today: Proc 5(4):10611–10620

    Google Scholar 

  39. Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116(23):12448–12454

    Article  CAS  Google Scholar 

  40. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo 2 O 4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39(28):15627–15638

    Article  CAS  Google Scholar 

  41. Zhuo Q, Gao J, Peng M, Bai L, Deng J, Xia Y, Ma Y, Zhong J, Sun X (2013) Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon 52:559–564

    Article  CAS  Google Scholar 

  42. Jiao X, Qiu Y, Zhang L, Zhang X (2017) Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv 7(82):52337–52344

    Article  CAS  Google Scholar 

  43. Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides@ spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433

    Article  CAS  Google Scholar 

  44. Shakir I (2014) High performance flexible pseudocapacitor based on nano-architectured spinel nickel cobaltite anchored multiwall carbon nanotubes. Electrochim Acta 132(2014):490–495

    Article  CAS  Google Scholar 

  45. Yang Y, Zeng D, Yang S, Gu L, Liu B, Hao S (2019) Nickel cobaltite nanosheets coated on metal-organic framework-derived mesoporous carbon nanofibers for high-performance pseudocapacitors. J Colloid Interface Sci 534:312–321

    Article  CAS  PubMed  Google Scholar 

  46. Marichi RB, Goel S, Tomar AK, Sahu V, Lalwani S, Singh G, Sharma RK (2020) Direct hydrothermal treatment of sugarcane juice for 3D oxygen-rich carbon aerogel/NiCo2O4 based supercapacitor. Mater Chem Phys 239:121957

    Article  CAS  Google Scholar 

  47. Lv Y, Wang H, Xu X, Shi J, Liu W, Wang X (2017) Balanced mesoporous nickle cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor. Chem Eng J 326:401–410

    Article  CAS  Google Scholar 

  48. Hu G, Li C, Gong H (2010) Capacitance decay of nanoporous nickel hydroxide. J Power Sources 195(19):6977–6981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support from Government of Republic of Tanzania through Tanzania Commission of Science and Technology (COSTECH), Mkwawa University College of Education. Hanyang University (South Korea) is also acknowledged for the SEM, TEM, BET and XRD characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talam Enock Kibona.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibona, T.E. Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes. J Solid State Electrochem 24, 1587–1598 (2020). https://doi.org/10.1007/s10008-020-04673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04673-4

Keywords

Navigation