Skip to main content
Log in

Three-phase electrodes: simple and efficient tool for analysis of ion transfer processes across liquid-liquid interface—twenty years on

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this review, we focus on major achievements of the three-phase electrode methodology applied for studying ion transfers across an interface between two immiscible liquids. Exactly 20 years ago, the group of electrochemists led by Fritz Scholz, invented an elegant and simple set up suitable to get access to the thermodynamics of ion transfers across liquid/liquid interface. Within the last two decades, besides determination of thermodynamics of the transfer of many important ionic substances, three-phase electrodes have been applied for many other purposes. Thermodynamics of interfacial chemical reactions, kinetics of ion and electron transfer, interfacial catalysis, recognition of chiral ions, synthesis of nano-particles, and biosensor development are some of the milestones achieved by application of three-phase electrodes. While elaborating briefly major achievements, future perspectives of this simple, but powerful electrochemical tool, have been also envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stillwell W (2016) An introduction to biological membranes, 2nd edn. Elsevier Science, Netherland

    Google Scholar 

  2. Yeagle PL (2016) The membranes of cells, 3rd edn. Elsevier

  3. Volkov GA, Deamer DW (1996) Liquid-liquid interfaces theory and methods. CRC Press, Taylor&Francis, Boca Raton

    Google Scholar 

  4. Volkov GA (2001) Liquid interfaces in chemical, biological and pharmaceutical applications. CRC press, Taylor&Francis, Boca Raton

    Google Scholar 

  5. Kwon Y (2001) Partition and distribution coefficients. In Handbook of essential pharmacokinetics, pharmacodynamics and drug metabolism for industrial scientists. New York, Kluwer Academic/Plenum Publishers.

  6. Girault HH, Schiffrin DJ (1989) Electrochemistry of liquid—liquid interfaces. In: Bard AJ (ed) Electroanalytical Chemistry. Marcel Dekker, New York, pp 1–141

    Google Scholar 

  7. Vanysek P (1996) Liquid—liquid electrochemistry. In: Vanysek P (ed) Modern techniques in electroanalysis. Wiley, New York, pp 337–364

    Google Scholar 

  8. Scholz F, Komorsky-Lovric S, Lovric M (2000) A new access to Gibbs energies of transfer of ions across liquid/liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions. Electrochem Commun 2:112–118

    CAS  Google Scholar 

  9. Komorsky-Lovric S, Lovric M, Scholz F (2001) Cyclic voltammetry of decamethylferrocene at the organic liquid/aqueous solution/graphite three-phase junction. J Electroanal Chem 508:129–137

    CAS  Google Scholar 

  10. Scholz F, Schroeder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  11. Scholz F, Domenech-Carbo A (2019) The thermodynamics of insertion electrochemical electrodes-A team play of electrons and ions across two separate interfaces. Angew Chem Int Ed 58:3279–3284

    CAS  Google Scholar 

  12. Donten M, Stojek Z, Scholz F (2002) Electron transfer-ion insertion electrochemistry at an immobilised droplet: probing the three-phase electrode-reaction zone with a Pt disk microelectrode. Electrochem Commun 4:324–329

    CAS  Google Scholar 

  13. Bak E, Donten M, Stojek Z, Scholz F (2007) The punctured droplet electrode - a new three-phase electrode with well defined geometry. Electrochem Commun 9:386–392

    CAS  Google Scholar 

  14. Scholz F (2006) Recent advances in the electrochemistry of ion transfer processes at liquid/liquid interfaces. Ann Rep Sect "C" (Physical Chemistry) 102:43–70

    CAS  Google Scholar 

  15. Gulaboski R, Borges RF, Pereira CM, Cordeiro MNDS, Garrido J, Silva AF (2007) Voltammetric insights in the transfer of ionizable drugs across biomimetic membranes: recent achievements. Comb Chem High Throughput Screen 10:514–526

    CAS  PubMed  Google Scholar 

  16. Hernandez VA, Scholz F (2006) One redox probe can drive the transfer of anions and cations across the aqueous electrolyte/ionic liquid interface. Electrochem Commun 8:967–972

    Google Scholar 

  17. Mirceski V, Gulaboski R, Bogeski I, Hoth M (2007) Redox chemistry of Ca-transporter 2-Palmitoylhydroquinone in an artificial thin organic film membrane. J Phys Chem C 111:6068–6076

    CAS  Google Scholar 

  18. Bogeski I, Gulaboski R, Kappl R, Mirceski V, Stefova M, Petreska J, Hoth M (2011) Calcium binding and transport by coenzyme Q. J Am Chem Soc 133:9293–9303

    CAS  PubMed  Google Scholar 

  19. Gulaboski R, Markovski V, Jihe Z (2016) Redox chemistry of coenzyme Q-a short overview of the voltammetric features. J Solid State Electrochem 20:3229–3238

    CAS  Google Scholar 

  20. Gulaboski R, Pereira CM, Cordeiro MNDS, Bogeski I, Silva AF (2005) Enzymatic formation of ions and their detection at a three-phase electrode. J Solid State Electrochem 9:469–474

    CAS  Google Scholar 

  21. Scholz F, Gulaboski R (2005) Determining the Gibbs energy of ion transfer across water-organic liquid interfaces with three-phase electrodes. Chem Phys Chem 6:1–13

    Google Scholar 

  22. Gulaboski R, Mirceski V, Pereira CM, Cordeiro MNDS, Silva AF, Quentel F, L’Her M, Lovric M (2006) A comparative study of the anion transfer kinetics across a water/nitrobenzene interface by means of electrochemical impedance spectroscopy and square-wave voltammetry at thin organic film-modified electrodes. Langmuir 22:3404–3412

    CAS  PubMed  Google Scholar 

  23. Gulaboski R, Scholz F (2003) Lipophilicity of peptide anions: an experimental data set for lipophilicity calculations. J Phys Chem B 107:5650–5657

    CAS  Google Scholar 

  24. Gulaboski R, Caban K, Stojek Z, Scholz F (2004) The determination of the standard Gibbs energies of ion transfer between water and heavy water by using the three-phase electrode approach. Electrochem Commun 6:215–218

    CAS  Google Scholar 

  25. Mirceski V, Gulaboski R, Scholz F (2004) Square-wave thin-film voltammetry: influence of uncompensated resistance and charge transfer kinetics. J Electroanal Chem 566:351–360

    CAS  Google Scholar 

  26. Scholz F, Gulaboski R, Caban K (2003) The determination of standard Gibbs energies of transfer of cations across the nitrobenzene|water interface using a three-phase electrode. Electrochem Commun 5:929–934

    CAS  Google Scholar 

  27. Gulaboski R, Riedel K, Scholz F (2003) Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkyl carboxylate anions at the water|nitrobenzene interface. Phys Chem Chem Phys 5:1284–1289

    CAS  Google Scholar 

  28. Gulaboski R, Mirceski V, Scholz F (2003) Determination of the standard Gibbs energies of transfer of cations and anions of amino acids and small peptides across the water nitrobenzene interface. Amino Acids 24:149–154

    CAS  PubMed  Google Scholar 

  29. Mirceski V, Gulaboski R, Scholz F (2002) Determination of the standard Gibbs energies of transfer of cations across the nitrobenzene|water interface utilizing the reduction of Iodine in an immobilized droplet. Electrochem Commun 4:814–819

    CAS  Google Scholar 

  30. Mirceski V, Dzimbova T, Sefer B, Krakutovski G (2010) Electrochemistry of coupled electron-ion transfer of a hem-like complex in an artificial organic membrane. Bioelectrochem 78:147–154

    CAS  Google Scholar 

  31. Dharmaraj K, Nasri Z, Kahlert H, Scholz F (2018) The electrochemistry of DPPH in three-phase electrode systems for ion transfer and ion association studies. J Electroanal Chem 823:765–772

    CAS  Google Scholar 

  32. Quentel F, Mirceski V, L'Her M (2005) Lutetium bis(tetra-tert-butylphthalocyaninato): a superior redox probe to study the transfer of anions and cations across the water|nitrobenzene interface by means of square-wave voltammetry at the three-phase electrode. J Phys Chem B 109:1262–1267

    CAS  PubMed  Google Scholar 

  33. Komorsky-Lovric S, Riedl K, Gulaboski R, Mirceski V, Scholz F (2002) Determination of standard Gibbs energies of transfer of organic anions across the water/nitrobenzene Interface. Langmuir 18:8000–8005

    CAS  Google Scholar 

  34. Quentel F, Mirceski V, L’Her M, Stankoska K (2012) Assisted ion transfer at organic film-modified electrodes. J Phys Chem C 116:22885–22892

    CAS  Google Scholar 

  35. Quentel F, Stankoska K, Grupce O, Jovanovski G, Mirceski V (2003) Electrochemistry of saccharinate anion at liquid interfaces. Electrochem Commun 13:1476–1478

    Google Scholar 

  36. Mirceski V, Quentel F, L’Her M, Scholz F (2004) Studying the coupled electron-ion transfer reaction at a thin-film modified electrode by means of square-wave voltammetry. J Electroanal Chem 586:86–97

    Google Scholar 

  37. Mirceski V, Scholz F (2002) Reduction of iodine at organic liquid/aqueous solution graphite electrode three-phase arrangement. J Electroanal Chem 522:189–198

    CAS  Google Scholar 

  38. Quentel F, Mirceski M, L'Her M, Mladenov M, Scholz F, Elleouet C (2005) Comparative study of the thermodynamics and kinetics of the ion transfer across the liquid/liquid interface by means of three-phase electrodes. J Phys Chem B 109:13228–13236

    CAS  PubMed  Google Scholar 

  39. Gulaboski R, Galland A, Bouchard G, Caban K, Kretschmer A, Carrupt PA, Girault HH, Scholz F (2004) A comparison of the solvation properties of 2-nitrophenyloctyl ether, nitrobenzene, and n-octanol as assessed by ion transfer Experiments. J Phys Chem B 108:4565–4572

    CAS  Google Scholar 

  40. Bouchard G, Galland A, Carrupt PA, Gulaboski R, Mirceski V, Scholz F, Girault HH (2004) Standard partition coefficients of anionic drugs in the n-octanol/water system determined by voltammetry at three-phase electrodes. Phys Chem Chem Phys 5:3748–3751

    Google Scholar 

  41. Gulaboski R, Mirceski V, Scholz F (2002) An electrochemical method for determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem Commun 4:277–283

    CAS  Google Scholar 

  42. Quentel F, Mirceski V, L’Her M (2008) Electrochemical study of thermodynamics and kinetics of hydrophilic ion transfers across water/n-octanol interface. J Solid State Electrochem 12:31–39

    CAS  Google Scholar 

  43. Shul G, Opallo M (2005) Ion transfer across liquid-liquid interface coupled to electrochemical redox reaction at carbon paste electrode. Electrochem Commun 7:193–198

    Google Scholar 

  44. Quentel F, Mirceski V, Elleouet C, L’Her M (2008) Studying the thermodynamics and kinetic of ion transfers across water-2-nitrophenyoctyl ether interface by means of organic-solution-modified electrodes. J Phys Chem C 112:15553–15561

    CAS  Google Scholar 

  45. Scholz F, Gulaboski R (2005) Gibbs energies of transfer of chiral anions across the interface water/chiral organic solvent determined with the help of three-phase electrodes. Faraday Discuss 129:169–177

    CAS  PubMed  Google Scholar 

  46. Scholz F, Gulaboski R, Mirceski V, Langer P (2003) Quantification of the chiral recognition in electrochemically driven ion transfer across the interface water/chiral liquid. Electrochem Commun 4:659–662

    Google Scholar 

  47. Quentel F, Elleouet C, Mirceski V, Hernandez VA, L’Her M, Lovric M, Komorsky-Lovric S, Scholz F (2007) Studying ion transfer across room temperature ionic liquid/aqueous electrolyte interface driven by redox reaction of lutetium bis(tetra-tert-butylphtalocyaninato). J Electroanal Chem 611:192–200

    CAS  Google Scholar 

  48. Niedziolka J, Rozniecka E, Stafiej J, Sirieix-Plenet J, Gaillon L, Opallo M (2005) Ion transfer processes at ionic liquid based redox active drop deposited on electrode surface. Chem Commun 23:2954–2956

    Google Scholar 

  49. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    CAS  Google Scholar 

  50. Adamiak W, Opallo M (2010) Electrochemical redox processes of fullerene C60 and decamethylferrocene dissolved in cast 1,2-dichlorobenzene film in contact with aqueous electrolyte. J Electroanal Chem 643:82–88

    CAS  Google Scholar 

  51. Schroder U, Compton RG, Marken F, Bull SD, Davies SG, Gilmour S (2001) Electrochemically driven ion insertion processes across liquid/liquid boundaries: neutral versus ionic redox liquids. J Phys Chem B 105:1344–1350

    Google Scholar 

  52. Wadhawan JD, Evans RG, Banks CE, Wilkins SJ, France RR, Oldham NJ, Fairbanks AJ, Wood B, Walton AJ, Schroder U, Compton RG (2002) Voltammetry of electroactive oil droplets: electrochemically-induced ion insertion, expulsion and reaction processes at microdroplets of N, N, N’, N’-tetraalkyl-para-phenylendiamines (TRPD, R = n-butyl, n-hexyl, n-heptyl, and n-nonyl). J Phys Chem B 106:9619–9632

    CAS  Google Scholar 

  53. Komorsky-Lovric S, Mirceski V, Kabbe C, Scholz F (2004) An in situ microscopic spectroelectrochemical study of a three-phase electrode where an ion transfer at the water/nitrobenzene interface is coupled to an electron transfer at the ITO/nitrobenzene. J Electroanal Chem 566:371–377

    CAS  Google Scholar 

  54. Mirceski V, Gulaboski R, Scholz F (2003) Square-wave thin-film voltammetry: influence of uncompensated resistance and charge transfer kinetics. J Electroanal Chem 566:351–360

    Google Scholar 

  55. Lovric M, Scholz F (2003) Modelling cyclic voltammograms of simultaneous electron and ion transfer reactions at a conic film three-phase electrode. J Electroanal Chem 540:86–96

    Google Scholar 

  56. Myland JC, Oldham KB (2002) A model of cyclic voltammetry for a thing organic layer sandwiched between an electrode and an aqueous solution. Convolutive modelling in absences of supporting electrolyte. J Electroanal Chem 530:1–9

    CAS  Google Scholar 

  57. Mirceski V (2003) Charge transfer kinetics in thin-film voltammetry: Theoretical study under conditions of square-wave voltammetry. J Phys Chem B 108:13719–13725

    Google Scholar 

  58. Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry. Theory and application (Scholz F. ed.). Springer, Berlin

    Google Scholar 

  59. Mirceski V, Quentel F, L’Her M, Pondaven A (2005) Studying the kinetics of ion transfer across the liquid/liquid interface by means of thin-film electrodes. Electrochem Commun 7:1122–1128

    CAS  Google Scholar 

  60. Hill SS, Dryfe RAW, Roberts EPL, Fisher AC, Yunus K (2003) Hydrodynamic study of ion transfer at the liquid/liquid interface: the channel flow cell. Anal Chem 75:486–493

    CAS  PubMed  Google Scholar 

  61. Komorsky-Lovric S, Lovric M (2005) Kinetics of electrode reaction coupled to ion transfer across liquid/liquid interface. Centr Europ J Chem 3:216–229

    CAS  Google Scholar 

  62. Mirceski V, Quentel F, L’Her M (2009) Chiral recognition based on the kinetics of ion transfers across liquid/liquid interface. Electrochem Commun 11:1262–1264

    CAS  Google Scholar 

  63. Scholz F, Schroeder U, Gulaboski R, Domenech Carbo A (2014) Electrochemistry of immobilized particles and droplets. Experiments with three-phase electrodes. Springer, Berlin

    Google Scholar 

  64. Mirceski V, Gulaboski R (2006) Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode. J Phys Chem B 110:2812–2820

    CAS  PubMed  Google Scholar 

  65. Mirceski V (2006) Effect of silver particles deposited at water/nitrobenzene interface on the voltammetric response of thin-film electrodes. Electrochem Commun 8:123–128

    CAS  Google Scholar 

  66. Sefer B, Gulaboski R, Mirceski V (2012) Electrochemical deposition of gold at liquid-liquid interfaces by thin-organic film modified electrodes. J Solid State Electrochem 16:2373–2381

    CAS  Google Scholar 

  67. Kaminska I, Niedziolka-Jonsson J, Roguska A, Opallo M (2010) Electrodeposition of gold nanoparticles at a solid/ionic liquid/aqueous electrolyte three-phase junction. Electrochem Commun 12:1742–1745

    CAS  Google Scholar 

  68. MacDonald SM, Fletcher PDI, Cui ZG, Opallo M, Chen J, Marken F (2007) Carbon nanoparticle stabilized liquid/liquid micro-interfaces for electrochemically driven ion-transfer processes. Electrochim Acta 53:1175–1181

    CAS  Google Scholar 

  69. Podrazka M, Witkowska Nery E, Pacowska A, Arrigan DMW, Jonsson-Niedziolka M (2018) Paper-based system for ion transfer across the liquid-liquid interface. Anal Chem 90:8727–8731

    CAS  PubMed  Google Scholar 

  70. Podrazka M, Maciejewska J, Adamiak W, Witkowska Nery E, Jonsson-Niedziolka M (2019) Facilitated cation transfer at a three-phase junction and its applicability for ionophore evaluation. Electrochim Acta 307:326–333

    CAS  Google Scholar 

  71. Marken F, McKenzie KJ, Opallo M (2005) Ion transfer processes at 4-(3-phenylpropyl)-piridine/aqueous electrolyte/electrode triple phase boundary systems supported by graphite and by mesoporous TiO2. Faraday Discuss 129:219–229

    CAS  PubMed  Google Scholar 

  72. Shul G, Sirieix-Plenet J, Gaillon L, Opallo M (2006) Ion transfer at carbon paste electrode based ionic liquid. Electrochem Commun 8:1111–1114

    CAS  Google Scholar 

  73. Rozniecka E, Niedziolka J, Sirieix-Plenet J, Gaillon L, Opallo M (2006) Ion transfer processes at the room temperature ionic liquid/aqueous solution interface supported by a hydrophobic carbon nanofibers-silica composite films. J Electroanal Chem 587:133–139

    CAS  Google Scholar 

  74. Kaluza D, Adamiak W, Opallo M, Jonsson-Niedziolka M (2014) Comparison of ion transfer thermodynamics at microfluidic and droplet-based three phase electrodes. Electrochim Acta 132:158–164

    CAS  Google Scholar 

  75. Benjamin I (1993) Mechanism and dynamics of ion transfer across a liquid-liquid interface. Science 261:1558–1560

    CAS  PubMed  Google Scholar 

  76. Benjamin I (1997) Molecular structure and dynamics at liquid-liquid interfaces. Ann Rev Phys Chem 48:407–451

    CAS  Google Scholar 

  77. Jorge M, Gulaboski R, Pereira CM, Cordeiro MNDS (2006) Molecular dynamics study of nitrobenzene and 2-nitrophenyloctyl ether saturated with water. Mol Phys 104:3627–3634

    CAS  Google Scholar 

  78. Jorge M, Gulaboski R, Pereira CM, Cordeiro MNDS (2006) Molecular dynamics study of 2-nitrophenyl octyl ether and nitrobenzene. J Phys Chem B 110:12530–12538

    CAS  PubMed  Google Scholar 

  79. Jorge M, Cordeiro MNDS (2007) Intrinsic structure and dynamics of water/nitrobenzene interface. J Phys Chem C 111:17612–17626

    CAS  Google Scholar 

  80. Fernandes PA, Cordeiro MNDS, Gomes JANF (1999) Molecular dynamics simulation of the water/2-heptanone liquid-liquid interface. J Phys Chem B 103:6290–6299

    CAS  Google Scholar 

  81. Jorge M, Cordeiro MNDS (2008) Molecular dynamics study of the interface between water and 2-nitrophenyl octyl ether. J Phys Chem B 112:2415–2429

    CAS  PubMed  Google Scholar 

  82. Fernandes PA, Cordeiro MNDS, Gomes JRB (2000) Influence of ion size and charge in ion transfer processes across L/L interface. J Phys Chem B 104:2278–2286

    CAS  Google Scholar 

  83. Weatherly CKT, Ren H, Edwards MA, Wang L, White HS (2019) Coupled electron and phase-transfer reactions at a three-phase interface. J Am Chem Soc 141:18091–18098

    Google Scholar 

  84. Vishwanath RS, Witkowska Nery E, Jonsson-Niedziolka M (2019) Electrochemistry of selected quinones at immiscible n-octyl-2-pyrrolidone/aqueous interface using a three-phase electrode system. Electrochim Acta 306:54–60

    CAS  Google Scholar 

  85. Vishwanath RS, Witkowska Nery E, Jonsson-Niedziolka M (2019) Electrochemical reduction of 7,7,8,8-tetracyanoquinodimethane at the n-octyl pyrrolidone/water/electrode three-phase junction. J Electroanal Chem 854. https://doi.org/10.1016/j.jelechem.2019.113558

Download references

Acknowledgments

VM acknowledges with gratitude the financial support through the NATO SPS G5550 project (Gas sensors for preventing terrorist attacks). RG thanks the Goce Delcev University in Stip Macedonia, for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Gulaboski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We dedicate this work to our great friend, supervisor, and close collaborator, professor Fritz Scholz, on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulaboski, R., Mirceski, V., Komorsky-Lovric, S. et al. Three-phase electrodes: simple and efficient tool for analysis of ion transfer processes across liquid-liquid interface—twenty years on. J Solid State Electrochem 24, 2575–2583 (2020). https://doi.org/10.1007/s10008-020-04629-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04629-8

Keywords

Navigation