Skip to main content
Log in

Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair

  • Special Issue: CESB 2019
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

As the main component of the natural cornea, collagen (COL) has been widely applied to the construction of corneal repair materials. However, the applications of collagen are limited due to its poor mechanical properties. Cellulose nanocrystals (CNCs) possess excellent mechanical properties, optical transparency and good biocompatibility. Therefore, in this study, we attempted to introduce cellulose nanocrystals into collagen-based films to obtain corneal repair materials with a high strength. CNCs were incorporated at 1, 3, 5, 7 and 10 wt%. The physical properties of these composite films were characterized, and in vitro cell-based analyses were also performed. The COL/CNC films possessed better mechanic properties, and the introduction of CNCs did not affect the water content and light transmittance. The COL/CNC films demonstrated good biocompatibility toward rabbit corneal epithelial cells and keratocytes in vitro. Moreover, the collagen films with appropriate ration of CNCs effectively induced the migration of corneal epithelial cells and inhibited the myofibroblast differentiation of keratocytes. A collagen film with 7 wt% CNCs displayed the best combination of physical properties and biological performance in vitro among all the films. This study describes a nonchemical cross-linking method to enhance the mechanical properties of collagen for use in corneal repair materials and highlights potential application in corneal tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refractive Surg. 2011;37:588–98.

    Article  Google Scholar 

  2. Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Pro. Mol Biol Transl. Sci. 2015;134:7–23.

    Article  CAS  Google Scholar 

  3. Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retinal Eye Res. 2007;26:359–78.

    Article  CAS  Google Scholar 

  4. Oliva MS, Schottman T, Gulati M. Turning the tide of corneal blindness. Indian J Ophthalmol. 2012;60:423–7.

    Article  Google Scholar 

  5. Lamm V, Hara H, Mammen A, Dhaliwal D, Cooper DK. Corneal blindness and xenotransplantation. Xenotransplantation. 2014;21:99–114.

    Article  Google Scholar 

  6. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.

    Article  Google Scholar 

  7. Palchesko RN, Carrasquilla SD, Feinberg AW. Natural biomaterials for corneal tissue engineering, repair, and regeneration. Adv Healthcare Mater. 2018;7:1701434.

    Article  CAS  Google Scholar 

  8. Chen Z, You J, Liu X, Cooper S, Hodge C, Sutton G, et al. Biomaterials for corneal bioengineering. Biomed Mater. 2018;13:032002.

    Article  Google Scholar 

  9. Avadhanam VS, Liu CS. A brief review of Boston type-1 and osteo-odonto keratoprostheses. Br J Ophthalmol. 2015;99:878–87.

    Article  Google Scholar 

  10. Li L, Lu C, Wang L, Chen M, White J, Hao X, et al. Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl Mater Interfaces. 2018;10:13283–92.

    Article  CAS  Google Scholar 

  11. Sani ES, Kheirkhah A, Rana D, Sun Z, Foulsham W, Sheikhi A, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci Adc. 2019;5:eaav1281.

    CAS  Google Scholar 

  12. Aghaei-Ghareh-Bolagh B, Guan J, Wang YW, Martin AD, Dawson R, Mithieux SM, et al. Optically robust, highly permeable and elastic protein films that support dual cornea cell types. Biomaterials. 2019;188:50–62.

    Article  CAS  Google Scholar 

  13. Liu Y, Gan L, Carlsson DJ, Fagerholm P, Lagali N, Watsky MA, et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Investig Ophthalmol Visual Sci. 2006;47:1869–75.

    Article  Google Scholar 

  14. Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Investig Ophthalmol Visual Sci. 2008;49:3887–94.

    Article  Google Scholar 

  15. Cui Z, Zeng Q, Liu S, Zhang Y, Zhu D, Guo Y, et al. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model. Acta Biomater. 2018;75:183–99.

    Article  Google Scholar 

  16. Kishore V, Iyer R, Frandsen A, Nguyen T-U. In vitrocharacterization of electrochemically compacted collagen matrices for corneal applications. Biomed Mater. 2016;11:055008.

    Article  CAS  Google Scholar 

  17. Tanaka Y, Baba K, Duncan TJ, Kubota A, Asahi T, Quantock AJ, et al. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking. Biomaterials. 2011;32:3358–66.

    Article  CAS  Google Scholar 

  18. Tanaka Y, Kubota A, Matsusaki M, Duncan T, Hatakeyama Y, Fukuyama K, et al. Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications. J Biomater Sci Polym. Ed. 2012;22:1427–42.

    Article  CAS  Google Scholar 

  19. Lee HJ, Fernandes-Cunha GM, Na KS, Hull SM, Myung D. Bio-orthogonally crosslinked, in situ forming corneal stromal tissue substitute. Adv Healthcare Mater. 2018;7:1800560.

    Article  CAS  Google Scholar 

  20. Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, et al. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater. 2013;9:7796–805.

    Article  CAS  Google Scholar 

  21. Choi S, Shin JH, Cheong Y, Jin KH, Park HK. Structural and biomechanical effects of photooxidative collagen cross-linking with photosensitizer riboflavin and 370 nm UVA light on human corneoscleral tissues. Microsc Microanal. 2013;19:1334–40.

    Article  CAS  Google Scholar 

  22. Koulikovska M, Rafat M, Petrovski G, Veréb Z, Akhtar S, Fagerholm P, et al. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique. Tissue Eng Part A. 2015;21:1116–30.

    Article  CAS  Google Scholar 

  23. Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol. 2019;126:620–32.

    Article  CAS  Google Scholar 

  24. Amruthwar SS, Puckett AD, Janorkar AV. Preparation and characterization of novel elastin-like polypeptide-collagen composites. J Biomed Mater Res Part A. 2013;101:2383–91.

    Article  CAS  Google Scholar 

  25. Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27:4608–17.

    Article  CAS  Google Scholar 

  26. Liu D, Chen X, Yue Y, Chen M, Wu Q. Structure and rheology of nanocrystalline cellulose. Carbohydr Polym. 2011;84:316–22.

    Article  CAS  Google Scholar 

  27. Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci, Part B. 2014;52:791–806.

    Article  CAS  Google Scholar 

  28. Trache D, Hussin MH, Haafiz MKM, Thakur VK. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 2017;9:1763–86.

    Article  CAS  Google Scholar 

  29. Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res, Part A. 2014;102:1131–9.

    Article  CAS  Google Scholar 

  30. Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU. Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromolecules. 2017;18:2179–94.

    Article  CAS  Google Scholar 

  31. Liu Y, Ren L, Long K, Wang L, Wang Y. Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering. Acta Biomater. 2014;10:289–99.

    Article  CAS  Google Scholar 

  32. Favier V, Cavaille J, Canova G, Shrivastava S. Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci. 1997;37:1732–9.

    Article  CAS  Google Scholar 

  33. Pooyan P, Tannenbaum R, Garmestani H. Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater. 2012;7:50–9.

    Article  CAS  Google Scholar 

  34. Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ. Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater. 2009;21:1712–5.

    Article  CAS  Google Scholar 

  35. Lewis PN, White TL, Young RD, Bell JS, Winlove CP, Meek KM. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Exp Eye Res. 2016;146:43–53.

    Article  CAS  Google Scholar 

  36. von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23:4221–31.

    Article  Google Scholar 

  37. Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts. J Biomed Mater Res Part A. 2006;79:185–92.

    Article  CAS  Google Scholar 

  38. Chi C, Trinkaus-Randall V. New insights in wound response and repair of epithelium. J Cell Physiol. 2013;228:925–9.

    Article  CAS  Google Scholar 

  39. Crosson C, Klyce S, Beuerman R. Epithelial wound closure in the rabbit cornea. A biphasic process. Investig Ophthalmol Visual Sci. 1986;27:464–73.

    CAS  Google Scholar 

  40. Liu CY, Kao WW. Corneal Epithelial Wound Healing. Prog Mol Biol Transl Sci. 2015;134:61–71.

    Article  CAS  Google Scholar 

  41. Lu L, Reinach PS, Kao WW-Y. Corneal epithelial wound healing. Exp Biol Med. 2001;226:653–64.

    Article  CAS  Google Scholar 

  42. Hadjipanayi E, Mudera V, Brown RA. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J Tissue Eng Regener Med. 2009;3:77–84.

    Article  CAS  Google Scholar 

  43. Wong JY, Leach JB, Brown XQ. Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci. 2004;570:119–33.

    Article  CAS  Google Scholar 

  44. Torricelli AAM, Santhanam A, Wu JH, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110–8.

    Article  CAS  Google Scholar 

  45. Baldwin HC, Marshall J. Growth factors in corneal wound healing following refractive surgery: a review. Acta Ophthalmol Scand. 2002;80:238–47.

    Article  CAS  Google Scholar 

  46. Nakamura K. Interaction between injured corneal epithelial cells and stromal cells. Cornea. 2003;22:S35–47.

    Article  Google Scholar 

  47. Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70.

    Article  CAS  Google Scholar 

  48. Myrna KE, Pot SA, Murphy CJ. Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Vet Ophthalmol. 2009;12:25–7.

    Article  Google Scholar 

  49. Xiong S, Gao H, Qin L, Jia Y, Gao M, Ren L. Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Adv. 2019;9:29463–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant number 2017YFC1105004), the National Natural Science Foundation of China (grant number 31971261, 51603074), the Guangdong Basic and Applied Basic Research Foundation (grant number 2020A1515010668), the Guangdong Province Key R & D Program Project (grant number 2020B1111150002), the Natural Science Foundation of Guangdong Province (grant number 2017A030313294), the Guangdong Scientific and Technological Project (grant numbers 2014B090907004, 201508020123, 2018A050506018), the Medical Scientific Research Foundation of Guangdong Province (grant number A2018169), the Frontier Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (grant number 2018GZR110105008) and the Fundamental Research Funds for the Central Universities (grant number D2192170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huichang Gao or Li Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Gao, H., Xiong, S. et al. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. J Mater Sci: Mater Med 31, 55 (2020). https://doi.org/10.1007/s10856-020-06386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06386-6

Navigation