Skip to main content
Log in

Guest Inclusion of Pyridine Molecules into a Copper (II)-Bilayer Hydrogen-Bonded Metal–Organic Framework

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In this study, the continued investigation of a copper (II) complex that yields an extended hydrogen-bonded bilayer framework and it’s ability to include guest molecules, particularly pyridine molecules. Our previous study has shown the ability of this framework to include long-chanined alkyl alcohol molecules and now the copper-based framework has the ability to include pyridine molecules, via non-coordinative and coordinative inclusion. The description of three guest included hydrogen-bonded frameworks that will be discussed: (1) [α-methylbenzylammonium]2Cu(PDCA)2(H2O)·(pyridine), (2) [α-methylbenzylammonium]2Cu(PDCA)2(H2O)·(4-methylpyridine), (3) [α-methylbenzylammonium]2Cu(PDCA)2(H2O)·(4-tert-butylpyridine). The guest included frameworks will be discussed based on X-ray crystallography structures and thermogravimetric analysis data.

Graphic Abstract

The creation of a hydrogen-bonded metal-organic bilayer framework that allows for coordinative and non-coordinative guest inclusion of pyridine and pyridine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beatty AM (2003) Coord Chem Rev 246:131

    Article  CAS  Google Scholar 

  2. Dalrymple SA, Parvez M, Shimizu GK (2002) Inorg Chem 41:6986

    Article  CAS  Google Scholar 

  3. Braga D (2000) J Chem Soc Dalton 21:3705

    Article  Google Scholar 

  4. Braga D, Maini L, Polito M, Grepioni F (2004) Struct Bonding (Berlin) 111:1

    CAS  Google Scholar 

  5. Shimzu GKH, Vaidhyanathan R, Taylor JM (2009) Chem Soc Rev 38:1430

    Article  Google Scholar 

  6. Beatty A, Chen CL (2008) J Am Chem Soc 130:17222

    Article  Google Scholar 

  7. Beatty A, Helfrich B, Hogan G, Reed B (2006) Cryst Growth Des 6:122

    Article  CAS  Google Scholar 

  8. Hogan G, Rath N, Beatty A (2011) Cryst Growth Des 11:3740

    Article  CAS  Google Scholar 

  9. Fischer M, Beatty A (2014) CrystEngComm 16:7313

    Article  CAS  Google Scholar 

  10. Beach GJ, Hogan CE, Besong BN, Hogan GA (2019) J Mol Struct 1195:744–746

    Article  CAS  Google Scholar 

  11. Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31:474

    Article  CAS  Google Scholar 

  12. Pivovar A, Holman K, Ward M (2001) Chem Mater 13:3018

    Article  CAS  Google Scholar 

  13. Endo K, Koike T, Sawaki T, Hayashida O, Masuda H, Aoyama Y (1997) J Am Chem Soc 119:4117

    Article  CAS  Google Scholar 

  14. Lin RB, He Y, Li P, Wang H, Zhou W, Chen B (2019) Chem Soc Rev 48:1362–1389

    Article  CAS  Google Scholar 

  15. Lu M, Yang X, Li Y, Zhu Z, Wu Y, Xu H, Gao J, Yao J (2019) Chem Asian J 14(9):1590–1594

    Article  Google Scholar 

  16. Cui H, Chen S, Arman H, Ye Y, Alsalme A, Lin RB, Chen B (2019) Inorg Chim Acta 495:118938

    Article  CAS  Google Scholar 

  17. Holman K, Pivovar A, Swift J, Ward M (2001) Acc Chem Res 34:107

    Article  CAS  Google Scholar 

  18. Beatty A, Granger A, Simpson A (2002) Chem-Eur J 8:3254

    Article  CAS  Google Scholar 

  19. Biradha K, Dennis D, MacKinnon V, Sharma C, Zaworotko M (1998) J Am Chem Soc 120:11894

    Article  CAS  Google Scholar 

  20. Mallouk T, Gavin J (1998) Acc Chem Res 31:209

    Article  CAS  Google Scholar 

  21. Kitagawa S, Kitaura R, Noro SI (2001) Angew Chem Int Ed 43:2334

    Article  Google Scholar 

  22. Song J, Mao J, Sun Y, Zeng H, Kramer R, Clearfield A (2004) J Solid State Chem 177:633

    Article  CAS  Google Scholar 

  23. Chen CL, Beatty A (2007) Chem Commun. https://doi.org/10.1039/B613761J

    Article  Google Scholar 

  24. Dalrymple S, Shimizu G (2006) Chem Commun. https://doi.org/10.1039/B515735H

    Article  Google Scholar 

  25. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  26. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  27. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

Download references

Acknowledgements

The authors will would like to express their sincere appreciation to Dr. Joseph Reibenspies from the Department of Chemistry at Texas A&M University for assistance with the x-ray crystallography and Dr. Tan Zhang from the Polymer Technology Center at Texas A&M University for assistance with the thermogravimetric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg A. Hogan.

Ethics declarations

Conflict of interest

The authors declare that they have are no conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.H., Hogan, C.E. & Hogan, G.A. Guest Inclusion of Pyridine Molecules into a Copper (II)-Bilayer Hydrogen-Bonded Metal–Organic Framework. J Chem Crystallogr 51, 82–87 (2021). https://doi.org/10.1007/s10870-020-00838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00838-1

Keywords

Navigation