Skip to main content
Log in

Circulating miR34a levels as a potential biomarker in the follow-up of Ewing sarcoma

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Appropriate tools for monitoring sarcoma progression are still limited. The aim of the present study was to investigate the value of miR-34a-5p (miR34a) as a circulating biomarker to follow disease progression and measure the therapeutic response. Stable forced re-expression of miR34a in Ewing sarcoma (EWS) cells significantly limited tumor growth in mice. Absolute quantification of miR34a in the plasma of mice and 31 patients showed that high levels of this miRNA inversely correlated with tumor volume. In addition, miR34a expression was higher in the blood of localized EWS patients than in the blood of metastatic EWS patients. In 12 patients, we followed miR34a expression during preoperative chemotherapy. While there was no variation in the blood miR34a levels in metastatic patients at the time of diagnosis or after the last cycle of preoperative chemotherapy, there was an increase in the circulating miR34a levels in patients with localized tumors. The three patients with the highest fold-increase in the miR levels did not show evidence of metastasis. Although this analysis should be extended to a larger cohort of patients, these findings imply that detection of the miR34a levels in the blood of EWS patients may assist with the clinical management of EWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EWS:

Ewing sarcoma

miR34a:

miR-34a-5p

ctDNA:

circulating tumor DNA

FBS:

fetal bovine serum

STR:

short tandem repeat

GFP:

green fluorescence protein

pMIF-EV:

empty lentiviral vector

DXR:

doxorubicin

VCR:

vincristine

NSG:

NOD/SCID gamma

s.c.:

subcutaneously

IHC:

immunohistochemistry

ISH:

in situ miRNA hybridization

RT-qPCR:

quantitative reverse transcription PCR

ROC:

receiver operating characteristic

MRI:

magnetic resonance imaging

PRI:

EWS patients with localized primary tumors

PRI-Met:

EWS patients with detectable metastases at diagnosis

CTCs:

circulating tumor cells

References

  • Bacci G, Mercuri M, Longhi A, Bertoni F, Barbieri E, Donati D, Giacomini S, Bacchini P, Pignotti E, Forni C, Ferrari S (2002) Neoadjuvant chemotherapy for ewing's tumour of bone: recent experience at the rizzoli orthopaedic institute. Eur J Cancer 38(17):2243–2251

  • Bardelli A, Pantel K (2017) Liquid biopsies, what we do not know (yet). Cancer Cell 31(2):172–179

  • Bertaina A, Zecca M, Buldini B, Sacchi N, Algeri M, Saglio F, Perotti C, Gallina AM, Bertaina V, Lanino E, Prete A, Barberi W, Tumino M, Favre C, Cesaro S, del Bufalo F, Ripaldi M, Boghen S, Casazza G, Rabusin M, Balduzzi A, Fagioli F, Pagliara D, Locatelli F (2018) Unrelated donor vs hla-haploidentical alpha/beta t-cell- and b-cell-depleted hsct in children with acute leukemia. Blood 132(24):2594–2607

  • Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, Patidar R, Hurd L, Chen L, Shern JF, Liao H, Wen X, Gerard J, Kim JS, Lopez Guerrero JA, Machado I, Wai DH, Picci P, Triche T, Horvai AE, Miettinen M, Wei JS, Catchpool D, Llombart-Bosch A, Waldman T, Khan J (2014) The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent stag2 mutation. PLoS Genet 10(7):e1004475

  • Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, Kiezun A, Carter SL, Shukla SA, Mehta SS, Thorner AR, de Torres C, Lavarino C, Sunol M, McKenna A, Sivachenko A, Cibulskis K, Lawrence MS, Stojanov P, Rosenberg M, Ambrogio L, Auclair D, Seepo S, Blumenstiel B, DeFelice M, Imaz-Rosshandler I, Schwarz-Cruz y Celis A, Rivera MN, Rodriguez-Galindo C, Fleming MD, Golub TR, Getz G, Mora J, Stegmaier K (2014) The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 4(11):1326–1341

  • Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484

  • Del Re M, Crucitta S, Gianfilippo G, Passaro A, Petrini I, Restante G, Michelucci A, Fogli S, de Marinis F, Porta C et al (2019) Understanding the mechanisms of resistance in egfr-positive nsclc: from tissue to liquid biopsy to guide treatment strategy. Int J Mol Sci 20(16)

  • Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586

  • Ding ZS, He YH, Deng YS, Peng PX, Wang JF, Chen X, Zhao PY, Zhou XF (2019) Microrna-34a inhibits bladder cancer cell migration and invasion, and upregulates pten expression. Oncol Lett 18(5):5549–5554

  • Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (ccfdna) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958

  • Fagnou C, Michon J, Peter M, Bernoux A, Oberlin O, Zucker JM, Magdelenat H, Delattre O (1998) Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with ewing's tumor. Societe francaise d'oncologie pediatrique. J Clin Oncol 16(5):1707–1711

  • Ferrari S, Sundby Hall K, Luksch R, Tienghi A, Wiebe T, Fagioli F, Alvegard TA, Brach Del Prever A, Tamburini A, Alberghini M et al (2011). Nonmetastatic Ewing family tumors: high-dose chemotherapy with stem cell rescue in poor responder patients. Results of the italian sarcoma group/scandinavian sarcoma group iii protocol. Ann Oncol 22(5):1221–1227

  • Franzetti GA, Laud-Duval K, van der Ent W, Brisac A, Irondelle M, Aubert S, Dirksen U, Bouvier C, de Pinieux G, Snaar-Jagalska E, Chavrier P, Delattre O (2017) Cell-to-cell heterogeneity of ewsr1-fli1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene 36(25):3505–3514

  • Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA, Boucher KM, Watkins WS, Jorde LB, Graves BJ, Lessnick SL (2008) Microsatellites as ews/fli response elements in ewing's sarcoma. Proc Natl Acad Sci U S A 105(29):10149–10154

  • Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley MC, Kovar H, Grimer R, Whelan J, Claude L et al (2015) Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol 33(27):3036–3046

  • Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, Sorensen PH, Delattre O, Dirksen U (2018) Ewing sarcoma. Nat Rev Dis Primers 4(1):5

  • Haveman LM, Ranft A, Vd Berg H, Smets A, Kruseova J, Ladenstein R, Brichard B, Paulussen M, Kuehne T, Juergens H et al (2019) The relation of radiological tumor volume response to histological response and outcome in patients with localized Ewing sarcoma. Cancer Med 8(3):1086–1094

  • Hayashi M, Chu D, Meyer CF, Llosa NJ, McCarty G, Morris CD, Levin AS, Wolinsky JP, Albert CM, Steppan DA, Park BH, Loeb DM (2016) Highly personalized detection of minimal Ewing sarcoma disease burden from plasma tumor DNA. Cancer 122(19):3015–3023

  • Johnson KM, Taslim C, Saund RS, Lessnick SL (2017) Identification of two types of ggaa-microsatellites and their roles in ews/fli binding and gene regulation in Ewing sarcoma. PLoS One 12(11):e0186275

  • Kasalak O, Overbosch J, Glaudemans A, Boellaard R, Jutte PC, Kwee TC (2018) Primary tumor volume measurements in Ewing sarcoma: Mri inter- and intraobserver variability and comparison with fdg-pet. Acta Oncol 57(4):534–540

  • Kelly PN, Strasser A (2011) The role of bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18(9):1414–1424

  • Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C (2014) Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 11(3):129–144

  • Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microrna biomarkers in plasma and serum using quantitative reverse transcriptionpcr(qrt-pcr). Methods 50(4):298–301

  • Krumbholz M, Hellberg J, Steif B, Bauerle T, Gillmann C, Fritscher T, Agaimy A, Frey B, Juengert J, Wardelmann E et al (2016) Genomic ewsr1 fusion sequence as highly sensitive and dynamic plasma tumor marker in Ewing sarcoma. Clin Cancer Res 22(17):4356–4365

  • Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY (2011) A five-fivemicrorna signature identified from genome-wide serum microrna expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47(5):784–791

  • Marino MT, Grilli A, Baricordi C, Manara MC, Ventura S, Pinca RS, Bellenghi M, Calvaruso M, MattiaG DD et al (2014) Prognostic significance of mir-34a in Ewing sarcoma is associated with cyclin d1 and ki-67 expression. Ann Oncol 25(10):2080–2086

  • Maroni P, Puglisi R, Mattia G, Care A, Matteucci E, Bendinelli P, Desiderio MA (2017) In bone metastasis mir-34a-5p absence inversely correlates with met expression, while met oncogene is unaffected by mir-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis 38(5):492–503

  • Menyhart O, Gyorffy B (2020) Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 39:211–233

  • Mezzalira S, De Mattia E, Guardascione M, Dalle Fratte C, Cecchin E, Toffoli G (2019) Circulating-free DNA analysis in hepatocellular carcinoma: a promising strategy to improve patients' management and therapy outcomes. Int J Mol Sci 20(21)

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating micrornas as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

  • Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S, Alberghini M, Grilli A, Knuutila S, Schaefer KL et al (2012) Mir-34a predicts survival of ewing's sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol 226(5):796–805

  • Nugent M, Miller N, Kerin MJ (2012) Circulating mir-34a levels are reduced in colorectal cancer. J Surg Oncol 106(8):947–952

  • Obuchowski NA, Bullen JA (2018) Receiver operating characteristic (roc) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 63(7):07TR01

  • Orlando D, Miele E, De Angelis B, Guercio M, Boffa I, Sinibaldi M, Po A, Caruana I, Abballe L, Carai A et al (2018) Adoptive immunotherapy using pramespecific t cells in medulloblastoma. Cancer Res 78(12):3337–3349

  • Otto T, Candido SV, Pilarz MS, Sicinska E, Bronson RT, Bowden M, Lachowicz IA, Mulry K, Fassl A, Han RC, Jecrois ES, Sicinski P (2017) Cell cycletargeting micrornas promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 114(40):10660–10665

  • Pantel K, Alix-Panabieres C (2016) Functional studies on viable circulating tumor cells. Clin Chem 62(2):328–334

  • Pestell RG (2013) New roles of cyclin d1. Am J Pathol 183(1):3–9

  • Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suva ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB et al (2014) Ews-fli1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26(5):668–681

  • Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S et al (2014) Il-6r/stat3/mir-34a feedback loop promotes emt-mediated colorectal cancer invasion and metastasis. J Clin Invest 124(4):1853–1867

  • Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H (2010) Circulating micrornas as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12(6):R90

  • Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, Sommelet-Olive D, Landman-Parker J, Bours D, Michon J, Delattre O, Société Française d'Oncologie Pédiatrique (2003) Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol 21(1):85–91

  • Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, Calatayud D, Nielsen SE, Yilmaz M, Hollander NH et al (2014) Microrna biomarkers in whole blood for detection of pancreatic cancer. JAMA 311(4):392–404

  • Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free micrornas in cancer. Nat Rev Clin Oncol 11(3):145–156

  • Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schonegger A, Schuster M, Hadler J, Surdez D, Guillemot D, Lapouble E et al (2017) DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med 23(3):386–395

  • Sivori S, Meazza R, Quintarelli C, Carlomagno S, Della Chiesa M, Falco M, Moretta L, Locatelli F, Pende D (2019) Nk cell-based immunotherapy for hematological malignancies. J Clin Med 8(10)

  • Slabakova E, Culig Z, Remsik J, Soucek K (2017) Alternative mechanisms of mir-34a regulation in cancer. Cell Death Dis 8(10):e3100

  • Spurny C, Kailayangiri S, Jamitzky S, Altvater B, Wardelmann E, Dirksen U, Hardes J, Hartmann W, Rossig C (2018) Programmed cell death ligand 1 (pd-l1) expression is not a predominant feature in Ewing sarcomas. Pediatr Blood Cancer 65(1)

  • Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D (2016) The challenges of detecting circulating tumor cells in sarcoma. Front Oncol 6:202

  • Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, Zhang Z, Lapouble E, Grossetete-Lalami S, Rusch M et al (2014) Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of stag2 and tp53 mutations. Cancer Discov 4(11):1342–1353

  • Vymetalkova V, Cervena K, Bartu L, Vodicka P (2018) Circulating cell-free DNA and colorectal cancer: a systematic review. Int J Mol Sci 19(11)

  • Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y, Wei J, Chen X, Weng Y, He T, Zhang H (2015) Tumor suppressor mir-34a targets pd-l1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452

  • West DC, Grier HE, Swallow MM, Demetri GD, Granowetter L, Sklar J (1997) Detection of circulating tumor cells in patients with ewing's sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 15(2):583–588

  • Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, Wang HY, Cheng SQ, Xie D, Wang XF (2012) Tgf-beta-mir-34a-ccl22 signaling-induced treg cell recruitment promotes venous metastases of hbv-positive hepatocellular carcinoma. Cancer Cell 22(3):291–303

  • Zarone MR, Misso G, Grimaldi A, Zappavigna S, Russo M, Amler E, Di Martino MT, Amodio N, Tagliaferri P, Tassone P et al (2017) Evidence of novel mir-34a-based therapeutic approaches for multiple myeloma treatment. Sci Rep 7(1):17949

  • Zhang L, Liao Y, Tang L (2019) Microrna-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1):53

Download references

Acknowledgments

We are grateful to Chiara Gasperini, Michela Pierini, and Maria Teresa Marino for their technical support. We are indebted to Cristina Ghinelli for editing the manuscript.

Funding

This work was supported by the Italian Association for Cancer Research (AIRC project: IG18451 to KS) and by the PROVABES project (PER-2011-2353839). AD was awarded the AIRC fellowship “SITE” 19498.

Author information

Authors and Affiliations

Authors

Contributions

MS, AD, and KS were responsible for the study design and critical revision of the manuscript. MS and AD were responsible for most of the experiments, data analysis, and figure preparation. CG, CB, MS and AD were responsible for the selection and characterization of the A673 transfected variants. LL and P-LL were responsible for the in vivo studies. AP and CB were responsible for plasma collection. MCM, MS and AD were responsible for IHC analysis. GM and GP were responsible for ISH analyses. AB and AL were responsible for updating patient clinical information and follow-up examinations. KS wrote the manuscript.

Corresponding authors

Correspondence to Alessandra De Feo or Katia Scotlandi.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Ethics approval

The ethical committee of the Istituto Rizzoli approved the study involving human participants (0019012/2016 - AIRC 2016 and 0004340/2014 - PROVABES) and informed consent was obtained. The study was conducted in accordance with the Declaration of Helsinki ethical guidelines.

All animal procedures were done in accordance with European Directive 2010/63/UE and Italian law (DL 26/2014); experimental protocols were reviewed and approved by the institutional animal care and use committee (“Comitato per il Benessere Animale”) of the University of Bologna and by the Italian Ministry of Health with letters 782/2015-PR and 208/2017-PR.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciandra, M., De Feo, A., Parra, A. et al. Circulating miR34a levels as a potential biomarker in the follow-up of Ewing sarcoma. J. Cell Commun. Signal. 14, 335–347 (2020). https://doi.org/10.1007/s12079-020-00567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-020-00567-2

Keywords

Navigation