Skip to main content

Advertisement

Log in

Complex preimplantation genetic tests for Robertsonian translocation, HLA, and X-linked hyper IgM syndrome caused by a novel mutation of CD40LG gene

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To perform complex preimplantation genetic tests (PGT) for aneuploidy screening, Robertsonian translocation, HLA-matching, and X-linked hyper IgM syndrome (XHIGM) caused by a novel mutation c.156 G>T of CD40LG gene.

Methods

Reverse transcription PCR (RT-PCR) and Sanger sequencing were carried out to confirm the causative variant of CD40LG gene in the proband and parents. Day 5 and D6 blastocysts, obtained by in vitro fertilization (IVF) with intracytoplasmic sperm injection, underwent trophectoderm (TE) biopsy and whole genomic amplification (WGA) and next generation sequencing (NGS)-based PGT to detect the presence of a maternal CD40LG mutation, aneuploidy, Robertsonian translocation carrier, and human leukocyte antigen (HLA) haplotype.

Results

Sanger sequencing data of the genomic DNA showed that the proband has a hemizygous variant of c. 156 G>T in the CD40LG gene, while his mother has a heterozygous variant at the same position. Complementary DNA (cDNA) of CD40LG amplification and sequencing displayed that no cDNA of CD40LG was found in proband, while only wild-type cDNA of CD40LG was amplified in the mother. PGT results showed that only one of the six tested embryos is free of the variant c.156 G>T and aneuploidy and having the consistent HLA type as the proband. Meanwhile, the embryo is a Robertsonian translocation carrier. The embryo was transplanted into the mother’s uterus. Amniotic fluid testing results are consistent with that of PGT. A healthy baby girl was delivered, and the peripheral blood testing data was also consistent with the testing results of transplanted embryo.

Conclusions

The novel mutation of c. 156 G>T in CD40LG gene probably leads to XHIGM by nonsense-meditated mRNA decay (NMD), and complex PGT of preimplantation genetic testing for monogenic disease (PGT-M), aneuploidy (PGT-A), structural rearrangement (PGT-SR), and HLA-matching (PGT-HLA) can be performed in pedigree with both X-linked hyper IgM syndrome and Robertsonian translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72:291–300.

    Article  CAS  Google Scholar 

  2. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993;361:539–41.

    Article  CAS  Google Scholar 

  3. Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine. 2003;82:373–84.

    Article  CAS  Google Scholar 

  4. Bayrakci B, Ersoy F, Sanal O, Kilic S, Metin A, Tezcan I. The efficacy of immunoglobulin replacement therapy in the long-term follow-up of the B-cell deficiencies (XLA, HIM, CVID). Turk J Pediatr. 2005;47:239–46.

    PubMed  Google Scholar 

  5. Kato T, Tsuge I, Inaba J, Kato K, Matsuyama T, Kojima S. Successful bone marrow transplantation in a child with X-linked hyper-IgM syndrome. Bone Marrow Transplant. 1999;23:1081–3.

    Article  CAS  Google Scholar 

  6. Bick SL, Bick DP, Wells BE, Roesler MR, Strawn EY, Lau EC. Preimplantation HLA haplotyping using tri-, tetra-, and pentanucleotide short tandem repeats for HLA matching. J Assist Reprod Genet. 2008;25:323–31.

    Article  Google Scholar 

  7. Yu L, Wang X, Wang Y, Wang J. Identification of two novel mutations in patients with X-linked primary immunodeficiencies. Fetal Pediatr Pathol. 2015;34:91–8.

    Article  CAS  Google Scholar 

  8. Han L, Zhao FL, Sun QF, Wang P, Wang XA, Guo F, et al. Cytogenetic analysis of peripheral blood lymphocytes, many years after exposure of workers to low-dose ionizing radiation. Mutat Res Genet Toxicol Environ Mutagen. 2014;771:1–5.

    Article  CAS  Google Scholar 

  9. Porat S, Savchev S, Bdolah Y, Hurwitz A, Haimov-Kochman R. Early serum beta-human chorionic gonadotropin in pregnancies after in vitro fertilization: contribution of treatment variables and prediction of long-term pregnancy outcome. Fertil Steril. 2007;88:82–9.

    Article  CAS  Google Scholar 

  10. Chen L, Diao Z, Xu Z, Zhou J, Yan G, Sun H. The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst Biol Reprod Med. 2017;63:212–7.

    Article  Google Scholar 

  11. Sachdeva K, Discutido R, Albuz F, Almekosh R, Peramo B. Validation of next-generation sequencer for 24-chromosome aneuploidy screening in human embryos. Genet Test Mol Biomarkers. 2017;21:674–80.

    Article  CAS  Google Scholar 

  12. Treff NR, Thompson K, Rafizadeh M, Chow M, Morrison L, Tao X, et al. SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts. J Assist Reprod Genet. 2016;33:1115–9.

    Article  Google Scholar 

  13. Notarangelo LD, Duse M, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev. 1992;3:101–21.

    CAS  PubMed  Google Scholar 

  14. Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105:1881–90.

    Article  CAS  Google Scholar 

  15. Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36:490–501.

    Article  CAS  Google Scholar 

  16. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet. 2018;59:253–68.

    Article  CAS  Google Scholar 

  17. Kurosaki T, Maquat LE. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci. 2016;129:461–7.

    Article  CAS  Google Scholar 

  18. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci U S A. 2001;98:1166–70.

    Article  CAS  Google Scholar 

  19. Rawat A, Mathew B, Pandiarajan V, Jindal A, Sharma M, Suri D, et al. Clinical and molecular features of X-linked hyper IgM syndrome - an experience from North India. Clin Immunol. 2018;195:59–66.

    Article  CAS  Google Scholar 

  20. Verlinsky Y, Rechitsky S, Sharapova T, Laziuk K, Barsky I, Verlinsky O, et al. Preimplantation diagnosis for immunodeficiencies. Reprod BioMed Online. 2007;14:214–23.

    Article  CAS  Google Scholar 

  21. Shamash J, Rienstein S, Wolf-Reznik H, Pras E, Dekel M, Litmanovitch T, et al. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families. J Assist Reprod Genet. 2011;28:77–83.

    Article  Google Scholar 

  22. Wang J, Zeng Y, Ding C, Cai B, Lu B, Li R, et al. Preimplantation genetic testing of Robertsonian translocation by SNP array-based preimplantation genetic haplotyping. Prenat Diagn. 2018;38:547–54.

    Article  CAS  Google Scholar 

  23. Xu J, Zhang Z, Niu W, Yang Q, Yao G, Shi S, et al. Mapping allele with resolved carrier status of Robertsonian and reciprocal translocation in human preimplantation embryos. Proc Natl Acad Sci U S A. 2017;114:E8695–E702.

    Article  CAS  Google Scholar 

  24. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006;38:1166–72.

    Article  Google Scholar 

  25. Zheng H, Jin H, Liu L, Liu J, Wang WH. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38.

    Article  Google Scholar 

  26. Vera-Rodriguez M, Michel CE, Mercader A, Bladon AJ, Rodrigo L, Kokocinski F, et al. Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril. 2016;105:1047–55 e2.

    Article  Google Scholar 

  27. Chow JFC, Yeung WSB, Lee VCY, Lau EYL, Ng EHY. Evaluation of preimplantation genetic testing for chromosomal structural rearrangement by a commonly used next generation sequencing workflow. Eur J Obstet Gynecol Reprod Biol. 2018;224:66–73.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the family for their participation in this study.

Funding

The research was funded by the National Key Research and Development Program of China (2018YFC1003100, 2018YFC1004900), Natural Science Foundation of Shandong Province (ZR2018PH006, ZR2018MC014), and Key Research and Development Program of Shandong Province (2017G006035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This project was approved by the Ethics Committee of the Reproductive Medical Hospital Affiliated to Shandong University.

Statement of informed consent

The couple signed informed consent forms for ICSI treatment and PGT.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Niu, Y., Li, J. et al. Complex preimplantation genetic tests for Robertsonian translocation, HLA, and X-linked hyper IgM syndrome caused by a novel mutation of CD40LG gene. J Assist Reprod Genet 37, 2025–2031 (2020). https://doi.org/10.1007/s10815-020-01846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01846-y

Keywords

Navigation