Skip to main content
Log in

Lie models of simplicial sets and representability of the Quillen functor

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Extending the model of the interval, we explicitly define for each n ≥ 0 a free complete differential graded Lie algebra \(\mathfrak{L}_n\) generated by the simplices of Δn, with desuspended degrees, in which the vertices are Maurer-Cartan elements and the differential extends the simplicial chain complex of the standard n-simplex. The family \(\{\mathfrak{L{_\bullet}}\}_{n\geq0}\) is endowed with a cosimplicial differential graded Lie algebra structure which we use to construct two adjoint functors

$$Simpset\underset{{\left\langle \cdot \right\rangle }}{\overset{\mathfrak{L}}{\longleftrightarrow}}DGL$$

given by \(\langle{L}\rangle_\bullet={\rm{DGL}}(\mathfrak{L}_\bullet,L)\) and \(\mathfrak{L}(K)=\lim_{\rightarrow K}\mathfrak{L_\bullet}\). This new tool lets us extend the Quillen rational homotopy theory approach to any simplicial set K whose path components are not necessarily simply connected.

We prove that \(\mathfrak{L}(K)\) contains a model of each component of K. When K is a 1-connected finite simplicial complex, the Quillen model of K can be extracted from \(\mathfrak{L}(K)\). When K is connected then, for a perturbed differential ϑa, \(H_0(\mathfrak{L}(K),\partial_a)\) is the Malcev Lie completion of π1(K). Analogous results are obtained for the realization 〈L〉 of any complete DGL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bandiera, Descent of Deligne-Getzler ∞-groupoids, https://arxiv.org/abs/1705.02880.

  2. A. Berglund, {arHomological perturbation theory for algebras over operads}, Algebraic and Geometric Topology 14 (2014), 2511–2548

    Article  MathSciNet  Google Scholar 

  3. A. Berglund, Rational homotopy theory of mapping spaces via Lie theory for L-algebras, Homology, Homotopy and Applications 17 (2015), 343–369.

    Article  MathSciNet  Google Scholar 

  4. U. Buijs, Y. Félix, A. Murillo and D. Tanré, Maurer-Cartan elements in the Lie models of finite simplicial complexes, Canadian Mathematical Bulletin 60 (2017), 470–477.

    Article  MathSciNet  Google Scholar 

  5. U. Buijs, Y. Félix, A. Murillo and D. Tanré, Homotopy theory of complete Lie algebras and Lie models of simplicial sets, Journal of Topology 11 (2018), 799–825.

    Article  MathSciNet  Google Scholar 

  6. U. Buijs, Y. Félix, A. Murillo and D. Tanré, The infinity Quillen functor, Maurer-Cartan elements and DGL realizations, https://arxiv.org/abs/1702.04397.

  7. U. Buijs and A. Murillo, The Lawrence-Sullivan construction is the right model for I+, Algebraic and Geometric Topology 13 (2013), 577–588.

    Article  MathSciNet  Google Scholar 

  8. U. Buijs and A. Murillo, Algebraic models of non-connected spaces and homotopy theory of Lalgebras, Advances in Mathematics 236 (2013), 60–91.

    Article  MathSciNet  Google Scholar 

  9. X. Z. Cheng and E. Getzler, Transferring homotopy commutative algebraic structures, Journal of Pure and Applied Algebra 212 (2008), 2535–2542.

    Article  MathSciNet  Google Scholar 

  10. J. L. Dupont, Simplicial de Rham cohomology and characteristic classes, Topology 15 (1976), 233–245.

    Article  MathSciNet  Google Scholar 

  11. J. L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Mathematics, Vol. 640, Springer, Berlin-New York, 1978.

    Book  Google Scholar 

  12. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, Vol. 205, Springer, New York, 2001.

    Book  Google Scholar 

  13. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory. II, World Scientific, Hackensack, NJ, 2015.

    Book  Google Scholar 

  14. B. Fresse, Théorie des opérades de Koszul et homologie des algèbres de Poisson, Annales Mathématiques Blaise Pascal 13 (2006), 237–312.

    Article  MathSciNet  Google Scholar 

  15. E. Getzler, Lie theory for nilpotent Lalgebras, Annals of Mathematics 170 (2009), 271–301.

    Article  MathSciNet  Google Scholar 

  16. V. Hinich, Descent of Deligne groupoids, International Mathematics Research Notices 5 (1997), 223–239.

    Article  MathSciNet  Google Scholar 

  17. M. Kontsevich, Deformation quantization of Poisson manifolds, Letters in Mathematical Physics 66 (2003), 157–216.

    Article  MathSciNet  Google Scholar 

  18. R. Lawrence and D. Sullivan, A formula for topology/deformations and its significance, Fundamenta Mathematicae 225 (2014), 229–242.

    Article  MathSciNet  Google Scholar 

  19. A. Lazarev and M. Markl, Disconnected rational homotopy theory, Advances in Mathe-matics 283 (2015), 303–361.

    Article  MathSciNet  Google Scholar 

  20. J. L. Loday and B. Valette Algebraic Operads, Grundlehren der mathematischen Wis-senschaften, Vol. 346, Springer, Heidelberg, 2012.

    Book  Google Scholar 

  21. M. Majewski, Rational homotopical models and uniqueness, Memoirs of the American Mathematical Society 682 (2000).

  22. M. Manetti, Lectures on deformations of complex manifolds, Rendiconti di Matematica e delle sue Applicazioni. Serie VII 24 (2004), 1–183.

    MathSciNet  MATH  Google Scholar 

  23. W. Michaelis, Lie coalgebras, Advances in Mathematics 38 (1980), 1–54.

    Article  MathSciNet  Google Scholar 

  24. J. Neisendorfer, Lie algebras, coalgebras, and rational homotopy theory for nilpotent spaces, Pacific Journal of Mathematics 74 (1978), 429–460.

    Article  MathSciNet  Google Scholar 

  25. P-E. Parent and D. Tanré, Lawrence-Sullivan models for the interval, Topology and its Applications 159 (2012), 371–378.

    Article  MathSciNet  Google Scholar 

  26. D. Quillen, Rational homotopy theory, Annals of Mathematics 90 (1969), 205–295.

    Article  MathSciNet  Google Scholar 

  27. D. Robert-Nicoud, Representing the deformation ∞-groupoid, Algebraic and Geometric Topology 19 (2019), 1453–1476.

    Article  MathSciNet  Google Scholar 

  28. D. Sinha and B. Walter, Lie coalgebras and rational homotopy theory, I: Graph coalge-bras, Homology, Homotopy and Applications 13 (2011), 263–292.

    Article  MathSciNet  Google Scholar 

  29. D. Sullivan, Infinitesimal computations in topology, Institut des Hautes Études Scientifiques. Publications Mathématiques 47 (1977), 269–331.

    Article  MathSciNet  Google Scholar 

  30. D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, Vol. 1025, Springer, Berlin, 1983.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urtzi Buijs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buijs, U., Félix, Y., Murillo, A. et al. Lie models of simplicial sets and representability of the Quillen functor. Isr. J. Math. 238, 313–358 (2020). https://doi.org/10.1007/s11856-020-2026-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2026-8

Navigation