Skip to main content
Log in

Numerical modeling of ethanol-fueled solid oxide fuel cells with a Ni-BaZr0.1Ce0.7 Y0.1Yb0.1O3–δ external reformer

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A numerical model is developed to evaluate ethanol-fueled solid oxide fuel cells (E-SOFCs) with a Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3–δ (Ni-BZCYYb) external reformer owing to its high hydrophilia, carbon deposition resistance, and catalytic properties. This model is validated by the ethanol conversion and product selectivity with the introduction of the steam for adjusting the water-carbon ratio. The simulated E-SOFCs provide a suitable porosity and thickness for the Ni-BZCYYb external reformer, and the optimal control conditions are that the porosity is around 0.4, and the thickness is more than 4 mm for the best reforming effect, which can decrease the concentration polarization loss and improve cell performance. The carbon deposition boundaries and the equilibrium composition can be predicted by the thermodynamic equilibria calculation for E-SOFCs. The proposed model can give the optimization of the geometry design and operating conditions to avoid carbon deposition and improve the electrochemical performance of E-SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun C, Xie Z, Xia C, Li H, Chen L (2006) Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8:833–838

    Article  CAS  Google Scholar 

  2. Yang W, Zhu C, Ma Z, Sun C, Chen L, Chen Y (2014) MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode for solid oxide fuel cells. Int J Hydrog Energy 39:14411–14415

    Article  CAS  Google Scholar 

  3. Panthi D, Hedaya N, Du Y (2018) Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes. J Adv Ceram 7:325–335

    Article  CAS  Google Scholar 

  4. Yang Q, Chai F, Ma C, Sun C, Shi S, Chen L (2016) Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. J Mater Chem A 4:18031–18036

    Article  CAS  Google Scholar 

  5. Sun C, Su R, Chen J, Lu L, Guan P (2019) Carbon formation mechanism of C2H2 in Ni-based catalysts revealed by in situ electron microscopy and molecular dynamics simulations. ACS Omega 4:8413–8420

    Article  CAS  Google Scholar 

  6. Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al-Madhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238

    Article  CAS  Google Scholar 

  7. Boldrin P, Ruiz-Trejo E, Mermelstein J, Bermúdez Menéndez JM, Ramirez Reina T, Brandon NP (2016) Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 116:13633–13684

    Article  CAS  Google Scholar 

  8. Wang S, Yang Y, Dong Y, Zhang Z, Tang Z (2019) Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J Adv Ceram 8:1–18

    Article  Google Scholar 

  9. Wang X, Wei K, Yan S, Wu Y, Kang J, Feng P, Wang S, Zhou F, Ling Y (2020) Efficient and stable conversion of oxygen-bearing low-concentration coal mine methane by the electrochemical catalysis of SOFC anode: from pollutant to clean energy. Appl Catal B Environ 268:118413

    Article  Google Scholar 

  10. Xu H, Chen B, Tan P, Cai W, He W, Farrusseng D, Ni M (2018) Modeling of all porous solid oxide fuel cells. Appl Energy 219:105–113

    Article  CAS  Google Scholar 

  11. Ling Y, Chen J, Wang Z, Xia C, Peng R, Lu Y (2013) New ionic diffusion strategy to fabricate proton conducting solid oxide fuel cells based on a stable La2Ce2O7 electrolyte. Int J Hydrog Energy 38:7430–7437

    Article  CAS  Google Scholar 

  12. Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M, Liu P, Bai J, Tyson TA, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:357

    Article  Google Scholar 

  13. Ling YH, Wang ZB, Wang ZQ, Peng RR, Lin B, Yu WL, Isimjan TT, Lu YL (2015) A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater 58:204–212

    Article  CAS  Google Scholar 

  14. Venancio SA, de Miranda PEV (2011) Solid oxide fuel cell anode for the direct utilization of ethanol as a fuel. Scr Mater 65:1065–1068

    Article  CAS  Google Scholar 

  15. Xu Y, Zhang M, Roozeboom K, Wang DJBT (2017) Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield. Bioresour Technol 250:299

    Article  Google Scholar 

  16. Chen X, Khanna MJAE (2018) Effect of corn ethanol production on conservation reserve program acres in the US. Appl Energy 225:124–134

    Article  Google Scholar 

  17. Song W, Ma Z, Yang Y, Zhang S, Ou X, Ling Y Characterization and polarization DRT analysis of direct ethanol solid oxide fuel cells using low fuel partial pressures. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.03.146

  18. Farrell B, Linic S (2016) Direct electrochemical oxidation of ethanol on SOFCs: improved carbon tolerance of Ni anode by alloying. Appl Catal B Environ 183:386–393

    Article  CAS  Google Scholar 

  19. Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) Multi-fuel capability of solid oxide fuel cells. J Electroceram 13:669–675

    Article  CAS  Google Scholar 

  20. Chen B, Xu H, Tan P, Zhang Y, Xu X, Cai W, Chen M, Ni M (2019) Thermal modelling of ethanol-fuelled solid oxide fuel cells. Appl Energy 237:476–486

    Article  CAS  Google Scholar 

  21. Gomes RS, De Bortoli AL (2016) A three-dimensional mathematical model for the anode of a direct ethanol fuel cell. Appl Energy 183:1292–1301

    Article  CAS  Google Scholar 

  22. Gomes RS, De Souza MM, De Bortoli AL (2018) Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration. Chem Eng Res Des 136:371–384

    Article  CAS  Google Scholar 

  23. Arpornwichanop A, Chalermpanchai N, Patcharavorachot Y, Assabumrungrat S, Tade M (2009) Performance of an anode-supported solid oxide fuel cell with direct-internal reforming of ethanol. Int J Hydrog Energy 34:7780–7788

    Article  CAS  Google Scholar 

  24. Assabumrungrat S, Pavarajarn V, Charojrochkul S, Laosiripojana N (2004) Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol. Chem Eng Sci 59:6015–6020

    Article  CAS  Google Scholar 

  25. Douvartzides S, Tsiakaras PJI (2001) Performance of a SOFC powered with external ethanol steam reforming. Ionics 7:425–429

    Article  CAS  Google Scholar 

  26. Sun J (2004) Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int J Hydrog Energy 29:1075–1081

    Article  CAS  Google Scholar 

  27. Li N, Pu J, Chi B, Li J (2019) Ethanol steam reforming with a Ni–BaZr0.1Ce0.7 Y0.1Yb0.1O3–δ catalyst. Mater Today Energy 12:371–378

    Article  Google Scholar 

  28. Li X, Liu M, Lai SY, Ding D, Gong M, Lee JP, Blinn KS, Bu Y, Wang Z, Bottomley LA, Alamgir FM, Liu M (2015) In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chem Mater 27:822–828

    Article  Google Scholar 

  29. Liu M, Choi Y, Yang L, Blinn K, Qin W, Liu P, Liu M (2012) Direct octane fuel cells: a promising power for transportation. Nano Energy 1:448–455

    Article  CAS  Google Scholar 

  30. Wan Y, He B, Wang R, Ling Y, Zhao L (2017) Effect of Co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for protonic ceramic fuel cells. J Power Sources 347:14–20

    Article  CAS  Google Scholar 

  31. Lopez E, Divins NJ, Anzola A, Schbib S, Borio D, Llorca J (2013) Ethanol steam reforming for hydrogen generation over structured catalysts. Int J Hydrog Energy 38:4418–4428

    Article  CAS  Google Scholar 

  32. Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int J Hydrog Energy 30:437–445

    Article  CAS  Google Scholar 

  33. Idriss H, Scott M, Llorca J, Chan SC, Blackford MA, Pas SJ, Hill AJ, Alamgir FM, Rettew R, Petersburg C, Senanayake SD, Barteau MA (2008) A phenomenological study of the metal-oxide interface: the role of catalysis in hydrogen production from renewable resources. ChemSusChem 1:905–910

    Article  CAS  Google Scholar 

  34. Patel M, Jindal TK, Pant KK (2013) Kinetic study of steam reforming of ethanol on Ni-based ceria–zirconia catalyst. Ind Eng Chem Res 52:15763–15771

    Article  CAS  Google Scholar 

  35. Ni M (2013) Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Convers Manag 70:116–129

    Article  CAS  Google Scholar 

  36. Davidy A (2018) CFD simulation of ethanol steam reforming system for hydrogen production. ChemEngineering 2:34–58

  37. Wang X, Zhang T, Kang J, Zhao L, Guo L, Feng P, Zhou F, Ling Y (2017) Numerical modeling of ceria-based SOFCs with bi-layer electrolyte free from internal short circuit: comparison of two cell configurations. Electrochim Acta 248:356–367

    Article  CAS  Google Scholar 

  38. Wang XX, Ma ZK, Zhang T, Kang JH, Ou XM, Feng PZ, Wang SR, Zhou FB, Ling YH (2018) Charge-transfer modeling and polarization DRT analysis of proton ceramics fuel cells based on mixed conductive electrolyte with the modified anode-electrolyte interface. ACS Appl Mater Interfaces 10:35047–35059

    Article  CAS  Google Scholar 

  39. Shen S, Guo L, Liu H (2016) A polarization model for solid oxide fuel cells with a bi-layer electrolyte. Int J Hydrog Energy 41:3646–3654

    Article  CAS  Google Scholar 

  40. Abdullah S, Kamarudin SK, Hasran UA, Masdar MS, Daud WRW (2015) Development of a conceptual design model of a direct ethanol fuel cell (DEFC). Int J Hydrog Energy 40:11943–11948

    Article  CAS  Google Scholar 

  41. Punase KD, Rao N, Vijay P, Gupta SK (2019) Simulation and multi-objective optimization of a fixed bed catalytic reactor to produce hydrogen using ethanol steam reforming. Int J Energy Res 43:4580–4591

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National key R & D plan of China (No. 2018YFB1502600), China Postdoctoral Science Foundation (No. 2016 M600449 and No.2019 T120481), Xuzhou Science and Technology Project (No. KH17004), Open Sharing Fund for the Large-scale Instruments and Equipments of CUMT, Postgraduate Research & Practice Innovation Program of Jiangsu Province No.KYCX19_2198 & Practice Innovation Program of China University of Mining and Technology under grant No.KYCX19_2198.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanzhuo Zhang or Yihan Ling.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wang, X., Yang, Y. et al. Numerical modeling of ethanol-fueled solid oxide fuel cells with a Ni-BaZr0.1Ce0.7 Y0.1Yb0.1O3–δ external reformer. Ionics 26, 4587–4598 (2020). https://doi.org/10.1007/s11581-020-03613-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03613-6

Keywords

Navigation