Skip to main content
Log in

Temporal variation of the halide ions (F, Cl, Br, I) in medium-temperature (46–52 °C) thermal waters from the Sob-1 and Sob-2 wells, the Mura Basin, north-eastern Slovenia

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

An eleven-year monitoring (1987/88–1999) of chemical composition of Na-HCO3 thermal water from the wells Sob-1 and Sob-2 has shown long- and short-time scale changes occurring as a result of mixed character of abstracted thermal water and overexploitation of the wells. Constantly reoccurring changes of dynamic pressure induced the inflow of variable proportions of water from the most productive aquifer Thermal I and from lower-permeability aquifers in the underlying Lendava Formation which contain abundant CO2. The chloride ions originate from formation waters in the Lendava Formation, and for Thermal I, a local natural background is 80–85 mg/L. The fluoride ions mainly originate from waters in the Lendava Formation but do not correlate entirely with the chloride ions. It is assumed their abundance is largely controlled by interaction of CO2-rich waters with detritial marine carbonates and clay minerals. Temporal variations of concentrations of the bromide and iodide ions in thermal water from the Sob-1 largely correlate with variation of the chloride ions and indicate that the Lendava Formation is their major source. By overexploitation, some low-permeability aquifers in the Lendava Formation have been activated along with leakage from clayey lenses rich in organic matter and coal in the Mura Formation. The sources rich in the bromide and iodide, and iodide and chloride ions have been also recognized in the Sob-2 well at high pumping rate that amounted to 8.7 L/sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bjørlykke K (1994) Fluid flow processes and diagenesis in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, London, pp 127–140

    Google Scholar 

  • Bräuer K, Geissler WH, Kämpf H, Niedermann S, Rman N (2016) Helium and carbon isotope signatures of gas exhalations in the westernmost part of the Pannonian Basin (SE Austria/NE Slovenia): evidence for active mantle degassing. Chem Geol 422:60–70. https://doi.org/10.1016/j.chemgeo.2015.12.016

    Article  Google Scholar 

  • Carpenter R (1969) Factors controlling the marine geochemistry of fluorine. Geochim Cosmochim Acta 33:1153–1167

    Article  Google Scholar 

  • Collins AG, Bennet JH, Manuel OK (1971) Iodine and algae in sedimentary rocks associated with iodine-rich brines. Geol Soc Amer Bull 82:2607–2610

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Fodor L, Jelen B, Márton E, Rifelj H, Kraljić M, Kevrić R, Márton P, Koroknai B, Báldi-Beke M (2002) Miocene to Quaternary deformation, stratigraphy and paleogeography in Northeastern Slovenia and Southwestern Hungary. Geologija 45(1):103–114. https://doi.org/10.5474/geologija.2002.009

    Article  Google Scholar 

  • Fuge R (1974a) Chlorine. In: Wedepohl KH (ed) Handbook of Geochemistry, Chapter 17. Springer, Berlin

    Google Scholar 

  • Fuge R (1974b) Bromine. In: Wedepohl KH (ed) Handbook of Geochemistry, Chapter 35. Springer, Berlin

    Google Scholar 

  • Fuge R (1974c) Iodine. In: Wedepohl KH (ed) Handbook of Geochemistry, Chapter 53. Springer, Berlin

    Google Scholar 

  • Fuge R (1988) Sources of halogens in the environment, influences on human and animal health. Environ Geochem Health 10(2):51–61

    Article  Google Scholar 

  • Graf DL (1982) Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochim Cosmochim Acta 46:1431–1448

    Article  Google Scholar 

  • Guo Q, Wang Y, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor 93(1):1–12. https://doi.org/10.1016/j.gexplo.2006.07.001

    Article  Google Scholar 

  • Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, London, pp 151–174

    Google Scholar 

  • Hitchon B, Billings GK, Klovan JE (1971) Geochemistry and origin of formation waters in the Western Canada basin—III. Factors controlling chemical composition. Geochim Cosmochim Acta 54:13–21

    Google Scholar 

  • INA-Projekt Zagreb OOUR KGI, Geološki zavod Ljubljana TOZD GGG (1991) Raziskave nafte in plina v Sloveniji, Vol 1: Murska Depresija (Exploration of oil and gas in Slovenia, Vol. 1: The Mura Depression). Geološki zavod Ljubljana, Ljubljana, SI, 1–406

  • Jelen B, Rifelj H (2011) Površinska litostratigrafska in tektonska strukturna karta območja T-JAM projekta, severovzhodna Slovenija 1:100,000 (Surface lithostratigraphic and tectonic map of T-JAM project area, northeastern Slovenia 1:100,000). Geological Survey of Slovenia, Ljubljana, http://www.geo-zs.si/podrocje.aspx?id=489

  • Jelen B, Rifelj H, Bavec M, Rajver D (2006) Opredelitev dosedanjega konceptualnega geološkega modela Murske depresije (Definition of current conceptual geological model of the Mura depression), in Slovenian. Archive of Geological Survey of Slovenia, Ljubljana

    Google Scholar 

  • Kendrick MA (2018) Halogens in seawater, marine sediments and the altered oceanic lithosphere. In: Harlov DE and Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer Geochemistry, Springer International Publishing AG, pp 591–648, https://doi.org/1007/978-3-319-61667-4_9

  • Kennedy HA, Elderfield H (1987a) Iodine diagenesis in pelagic deep sea sediments. Geochim Cosmochim Acta 51:2489–2504

    Article  Google Scholar 

  • Kennedy HA, Elderfield H (1987b) Iodine diagenesis in non-pelagic deep sea sediments. Geochim Cosmochim Acta 51:2505–2514

    Article  Google Scholar 

  • Kharaka YK, Berry FAF (1973) Simultaneous flow of water and solutes through geological membranes, I. Experimental investigations. Geochim Cosmochim Acta 37:2577–2603

    Article  Google Scholar 

  • Kim K, Yeong GY (2005) Factors influencing natural occurrence of fluoride rich ground-waters: a case study in the southeastern part of the Korean Peninsula. Chemosphere 58(10):1399–1408. https://doi.org/10.1016/j.chemosphere.2004.10.002

    Article  Google Scholar 

  • Koščec J, Jovanović M (1968) Litostratigrafski profili tercijarnog kompleksa u dubokim bušotinama Murske potoline (Lithostratigraphic sections of the Tertiary complex in deep wells of the Mura Basin), (in Croatian). Fond Geol Dok INA-Projekt Zagreb, INA-Naftaplin, Zagreb

  • Kováč M, Hudáčková N, Halásová E, Kováčová M, Holcová K, Oszczypko-Clowes M, Báldi K, Less G, Nagymarosy A, Ruman A, Klučiar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. AGEOS 9(2):75–114

    Google Scholar 

  • Kralj P (1994) Prostorska in ekonomska ocean izdatnosti predterciarnih vodonosnikov na območju severovzhodne Slovenije, I. faza (Spatial and economic evaluation of capacity of pre-Tertiary aquifers in the area of Northeastern Slovenia, Phase I). SP Geološki zavod Ljubljana, Ljubljana, p 13

  • Kralj P (1995) Hidrodinamične in hidrokemijske lastnosti termalne vode v geotermalnem sistemu Termal I v Prekmurju, II. Faza (Hydrodynamical and hydrogeochemical characteristics of thermal water in the geothermal system Thermal I in Prekmurje, Phase II). Geološki zavod Ljubljana, Ljubljana, p 26

  • Kralj P (2001) Das Thermalwasser-System des Mur-Beckens in Nordost-Slovenien. Mitteil Ingenieur Hydrogeol 81:1–82

    Google Scholar 

  • Kralj P (2010) Eruptive and sedimentary evolution of the Pliocene Grad Volcanic Field, North-east Slovenia. J Volcanol Geoth Res 201:272–284. https://doi.org/10.1016/j.volgeores.2010.09.004

    Article  Google Scholar 

  • Kralj P, Kralj P (2000a) Thermal and mineral waters in north-eastern Slovenia. Environ Geol 39:488–500. https://doi.org/10.1007/s002540050455

    Article  Google Scholar 

  • Kralj P, Kralj P (2000b) Overexploitation of geothermal wells in Murska Sobota, Northeastern Slovenia. Proc World Geotherm Congress 2000:837–842

    Google Scholar 

  • Kralj P, Kralj P (2012) Geothermal waters from composite clastic sedimentary reservoirs: geology, production, overexploitation, well cycling and leakage—a case study of the Mura Basin (SW Pannonian Basin). In: Yang J (ed) Geothermal energy, technology and geology. Nova Science Publishers Inc., New York, pp 47–91

    Google Scholar 

  • Kraynov SR, Merkov AN, Petrova NG, Baturinskaya IV, Zharikova VM (1969) Highly alkaline (pH 12) fluosilicate waters in the deeper zone of the Lovozero Massif. Geochem Int 6:635–640

    Google Scholar 

  • Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and their vanadium-dependent halope-oxidases. Biochimie 88:1773–1785. https://doi.org/10.1016/j.biochi.2006.09.001

    Article  Google Scholar 

  • Lu Z, Hummel ST, Lautz LK, Hoke GD, Zhou X, Leone J, Siegel DI (2015) Iodine as a sensitive tracer for detecting influence of organic-rich shale in shallow groundwater. Appl Geochem 60:29–36. https://doi.org/10.1016/j.apgeochem.2014.10.019.0883-2927

    Article  Google Scholar 

  • Malvić T, Velić J (2011) Neogene tectonics in Croatian part of the Pannonian Basin and reflectance in hydrocarbon accumulations. In: Schattner U (ed.) New frontier in tectonic research – at the midst of plate convergence, 215–238. InTech, Rijeka, Croatia, http://www.intechopen.com/books/new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence/neogene-tectonics-in-croatian-part-of-the-pannonian-basin-and-reflectance-in-hydrocarbon-accumulation

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochim Cosmochim Acta 57:4377–4389

    Article  Google Scholar 

  • Márton E, Fodor L, Jelen B, Márton P, Rifelj H, Kevrić R (2002) Miocene to Quaternary deformation in NE Slovenia: complex paleomagnetic and structural study. J Geodyn 34(5):627–651. https://doi.org/10.1016/S0264-3707(02)00036-4

    Article  Google Scholar 

  • Matthies D, Troll G (1990) Distribution of fluorine in recent marine sediments related to petrographic composition: Bransfield strait and Northwestern Weddell Sea, Antartica. Mar Geol 91:313–324. https://doi.org/10.1016/0025-3227(90)90052-L

    Article  Google Scholar 

  • Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R, Matsumoto R (2007) Halogen concentrations in pore waters and sediments of the Nankai trough, Japan: implications for the origin of gas hydrates. Appl Geochem 22:534–556. https://doi.org/10.1016/j.apgeochem.2006.12.15

    Article  Google Scholar 

  • Nádor A, Lapajne A, Tóth G, Rman N, Szőcs T, Prestor J, Uhrin A, Rajver D, Fodor L, Muráti J, Székely E (2012) Transboundary geothermal resources of the Mura-Zala basin: a need for joint thermal aquifer management of Slovenia and Hungary. Geologija 55(2):209–224. https://doi.org/10.5474/geologija.2012.013

    Article  Google Scholar 

  • Peng BX, Wu DS (2011) Leaching characteristics of bromine in coal. J Fuel Chem Technol 39(9):647–651. https://doi.org/10.1016/S1872-5813(11)60040-6

    Article  Google Scholar 

  • Peng BX, Wu DS (2012) Modes of iodine occurrence in bituminous coal and anthracite and their environmental effects. J Fuel Chem Technol 40(3):257–262. https://doi.org/10.1016/S1872-5813(12)60013-9

    Article  Google Scholar 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4(2):151–168

    Google Scholar 

  • Pleničar M (1968) Basic geological map SFR Yugoslavia, scale 1:100,000 Sheet Goričko and Leibnitz. Federal Geological Survey, Belgrade

    Google Scholar 

  • Rajver D, Kralj P, Žlebnik L, Drobne F, Kranjc S (1994) Programme for efficient utilization of energy and renewable resources, Extraction of energy from renewable resources, Spatial and economical evaluation of capacity of pre-Tertiary aquifers in north-eastern Slovenia, Internal report. Archive of Geological Survey of Slovenia, Ljubljana

    Google Scholar 

  • Ravnik D, Rajver D, Žlebnik L, Kralj P (1992) Geološke strukture: viri termalnih in mineralnih vod v Sloveniji (Geological structures: the resources of thermal and mineral waters in Slovenia). In: Kralj P (ed) Mineralne in termalne vode v gospodarstvu in znanosti Slovenije (Mineral and thermal waters in economy and science of Slovenia). Geološki zavod Ljubljana, Ljubljana, pp 9–32

    Google Scholar 

  • Rijavec L, Bistričić A, Jenko M (1985) Mura Basin. In: Steininger FF, Senes J, Kleemann K, Rogl F (eds) Neogene of the Mediterranean Tethys and Paratethys. Institute of Paleontology, University of Vienna, Vienna

    Google Scholar 

  • Rman N (2014) Analysis of long-term thermal water abstraction and its impact on low-temperature intergranular geothermal aquifers in the Mura-Zala basin, NE Slovenia. Geothermics 55:214–227. https://doi.org/10.1016/j.geothermics.2014.01.011

    Article  Google Scholar 

  • Rotár-Szalkai A, Nádor A, Szőcs T, Maros G, Goetzl G, Zekiri F (2017) Outline and joint characterization of Transboundary geothermal reservoirs in the western part of the Pannonian basin. Geothermics 70:1–16. https://doi.org/10.1016/j.geothermics.2017.05.005

    Article  Google Scholar 

  • Royden LH (1988) Late Cenozoic tectonics of the Pannonian basin system. In: Royden LH, Horvath F (eds) The Pannonian Basin, a study in basin evolution. Am Assoc Pet Geol Mem 45:1–16

  • Rude PD, Aller RC (1991) Fluorine mobility during early diagenesis of carbonate sediment: an indicator of mineral transformations. Geochim Cosmochim Acta 55:2491–2509

    Article  Google Scholar 

  • Sahu P (2019) Fluoride pollution in groundwater. In: Sikdar PK (ed) Groundwater development and management. Capital Publishing Company, New Delhi, pp 329–350, https://doi.org/10.1007/978-3-319-75115-3_14

  • Šram D, Rman N, Rižnar I, Lapajne A (2015) The three-dimensional regional geological model of the Mura-Zala Basin, northeastern Slovenia. Geologija 58(2):139–154. https://doi.org/10.5474/geologija.2015.011

    Article  Google Scholar 

  • Szocs T, Rman N, Süveges M, Palcsu L, Tóth G, Lapajne A (2013) The application of isotope and chemical analyses in managing transboundary groundwater resources. Appl Geochem 32:95–107. https://doi.org/10.1016/j.apgeochem.2012.10.006

    Article  Google Scholar 

  • Szőcs T, Rman N, Rotár-Szalkai Á, Tóth G, Lapajne A, Cernak R, Nádor A (2018) The Upper Pannonian thermal aquifer: cross-border cooperation as an essential step to transboundary groundwater management. J Hydrol 20:128–144. https://doi.org/10.1016/j.ejrh.2018.02.004

    Article  Google Scholar 

  • Tóth G, Rman N, Rotár-Szalkai KT, Szőcs T, Lapajne A, Černák R, Remsík SG, Nádor A (2016) Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin. Renew Sustain Energy Rev 57:439–454. https://doi.org/10.1016/j.rser.2015.12.021

    Article  Google Scholar 

  • Worden RH (1996) Controls on halogen concentrations in sedimentary formation waters. Mineral Mag 60:259–274

    Article  Google Scholar 

  • Worden RH, Matray JM (1995) Cross-formational flow in the Paris Basin. Basin Res 7:53–66

    Article  Google Scholar 

  • Žlebnik L, Kralj P, Kokol L (1988a) Termalne vode na območju Murske Sobote, vrtina Sob-1 (Thermal waters in the Murska Sobota area, The Sob-1 well). Geološki zavod Ljubljana, Ljubljana, pp 1–24

    Google Scholar 

  • Žlebnik L, Žižek D, Kralj P, Kokol L (1988b) Termalne vode na območju Murske Sobote (Thermal waters in the Murska Sobota area). Geološki zavod Ljubljana, Ljubljana, pp 1–42

    Google Scholar 

Download references

Acknowledgements

The Slovenian Research Agency ARRS is greatly acknowledged for granting the research (Geotermalna energija -Geothermal Energy L2-7062 and Mineralne surovine—Mineral Resources P0025). The effort of Special Issue Editor Dr. Jim LaMoreaux and Guest Editors Drs. Adam Porowski, Nina Rman and Istvan Forizs is kindly appreciated. We are indebted to Dr. Nina Rman and an unknown reviewer for constructive comments that have helped to improve the manuscript. We thank Ms. Staška Čertalič for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polona Kralj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Mineral and Thermal Waters” guest edited by Drs. Adam Porowski, Nina Rman and Istvan Forizs, with James LaMoreaux as the Editor-in-Chief.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kralj, P., Kralj, P. Temporal variation of the halide ions (F, Cl, Br, I) in medium-temperature (46–52 °C) thermal waters from the Sob-1 and Sob-2 wells, the Mura Basin, north-eastern Slovenia. Environ Earth Sci 79, 283 (2020). https://doi.org/10.1007/s12665-020-09034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09034-y

Keywords

Navigation