Skip to main content

Advertisement

Log in

Source Switching Maintains Dissolved Organic Matter Chemostasis Across Discharge Levels in a Large Temperate River Network

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Dissolved organic matter (DOM) helps regulate aquatic ecosystem structure and function. In small streams, DOM concentrations are controlled by transport of terrestrial materials to waterways, and are thus highly variable. As rivers become larger, the River Continuum Concept hypothesizes that internal primary production is an increasingly important DOM source, but direct evidence is limited. Recently, the Pulse-Shunt Concept postulated that terrestrial DOM concentrations in larger rivers increase with flow and temperature, which seemingly contradicts previously reported DOM chemostasis in large rivers. This study estimates daily gross primary production (GPP) in 13 streams and rivers across the Connecticut River watershed (watershed areas 0.4–25,019 km2) from 2015 through 2017. Chemostasis of DOM concentrations is maintained by a switch from autochthonous sources of DOM at low flows to terrestrial sources of DOM at high flows in a large temperate river and to a lesser degree in smaller tributaries. At low flow, autochthonous DOM linked to aquatic GPP is the dominant fraction of the DOM pool in large rivers. This autochthonous DOM maintains chemostasis in the main stem and to a lesser extent upstream. Thus, in larger rivers, low-flow autochthonous production stabilizes DOM concentrations during the summer, a critical time for riverine ecology. Consistent with the Pulse-Shunt Concept, terrigenous DOM is the dominant fraction of DOM during higher flow periods and about 70% of annual DOM fluxes to the coast are terrestrial. This pattern of DOM switching is potentially widespread in temperate watersheds with implications to both inland waters and coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abbott BW, Gruau G, Zarnetske JP, Moatar F, Barbe L, Thomas Z, Fovet O, Kolbe T, Gu S, Pierson-Wickmann A-C, Davy P, Pinay G. 2018. Unexpected spatial stability of water chemistry in headwater stream networks. Ecol Lett 21:296–308.

    PubMed  Google Scholar 

  • Aitkenhead-Peterson JA, McDowell WH, Neff JC. 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay SEG, Sinsabaugh RL, Eds. Aquatic ecosystems. Aquatic ecology. Burlington: Academic Press. p 25–70.

    Google Scholar 

  • Anon. NHDPlus HR. https://www.sciencebase.gov/catalog/item/57645ff2e4b07657d19ba8e8. Accessed 30 Dec 2019.

  • Appling AP, Hall RO, Arroita M, Yackulic CB. 2017. streamMetabolizer: Models for Estimating Aquatic Photosynthesis and Respiration. https://github.com/USGS-R/streamMetabolizer.

  • Appling AP, Hall RO, Yackulic CB, Maite A. 2018. Overcoming equifinality: leveraging long time series for stream metabolism estimation. J Geophys Res Biogeosci 123:624–45.

    CAS  Google Scholar 

  • Baghoth SA, Sharma SK, Amy GL. 2011. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC. Water Res 45:797–809.

    CAS  PubMed  Google Scholar 

  • Balcarczyk KL, Jones JB, Jaffé R, Maie N. 2009. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–70.

    CAS  Google Scholar 

  • Barthold FK, Tyralla C, Schneider K, Vaché KB, Frede H-G, Breuer L. 2011. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour Res . https://doi.org/10.1029/2011WR010604.

    Article  Google Scholar 

  • Bernhardt ES, Heffernan JB, Grimm NB, Stanley EH, Harvey JW, Arroita M, Appling AP, Cohen MJ, McDowell WH, Hall RO, Read JS, Roberts BJ, Stets EG, Yackulic CB. 2018. The metabolic regimes of flowing waters: metabolic regimes. Limnol Oceanogr 63:S99–118.

    Google Scholar 

  • Bertilsson S, Jones Jr JB. 2002. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay S, Sinsabaugh RL, Eds. Aquatic ecosystems: interactivity of dissolved organic matter. San Diego, CA: Academic Press.

    Google Scholar 

  • Bianchi TS, Filley T, Dria K, Hatcher PG. 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi river. Geochim Cosmochim Acta 68:959–67.

    CAS  Google Scholar 

  • Birge EA, Juday C. 1934. Particulate and dissolved organic matter in inland lakes. Ecol Monogr 4:440–74.

    CAS  Google Scholar 

  • Bogan MT, Boersma KS, Lytle DA. 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshw Biol 58:1016–28.

    Google Scholar 

  • Booth G, Raymond PA, Oh N-H. 2007. LoadRunner. New Haven, CT: Yale University http://environment.yale.edu/raymond/loadrunner/.

  • Boyer EW, Hornberger GM, Bencala KE, McKnight DM. 1997. Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–47.

    Google Scholar 

  • Brezonik PL, Finlay JC, Griffin CG, Arnold WA, Boardman EH, Germolus N, Hozalski RM, Olmanson LG. 2019. Iron influence on dissolved color in lakes of the Upper Great Lakes States. PLOS ONE 14:e0211979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butman D, Raymond PA, Butler K, Aiken G. 2012. Relationships between Δ14-C and the molecular quality of dissolved organic carbon in rivers draining to the coast from the conterminous United States. Glob Biogeochem Cycles 26:GB4014.

    Google Scholar 

  • Catalán N, Marcé R, Kothawala DN, Tranvik LJ. 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci 9:501–4.

    Google Scholar 

  • Coble PG. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–46.

    CAS  Google Scholar 

  • Cory RM, McKnight DM. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–9.

    CAS  PubMed  Google Scholar 

  • Cory RM, Miller MP, McKnight DM, Guerard JJ, Miller PL. 2010. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Methods 8:67–78.

    CAS  Google Scholar 

  • Creed IF, McKnight DM, Pellerin BA, Green MB, Bergamaschi BA, Aiken GR, Burns DA, Findlay SEG, Shanley JB, Striegl RG, Aulenbach BT, Clow DW, Laudon H, McGlynn BL, McGuire KJ, Smith RA, Stackpoole SM. 2015. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can J Fish Aquat Sci 72:1272–85.

    Google Scholar 

  • Dietze E, Dietze M. 2019. Grain-size distribution unmixing using the R package EMMAgeo. EampG Quat Sci J 68:29–46.

    Google Scholar 

  • Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A. 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment Geol 243–244:169–80.

    Google Scholar 

  • Fasching C, Behounek B, Singer GA, Battin TJ. 2014. Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci Rep 4:4981.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasching C, Ulseth AJ, Schelker J, Steniczka G, Battin TJ. 2016. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone: hydrology controls stream and hyporheic DOM. Limnol Oceanogr 61:558–71.

    PubMed  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E, Boone RD. 2008. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry 88:169–84.

    CAS  Google Scholar 

  • Fellman JB, Hood E, Edwards RT, D’Amore DV. 2009. Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res . https://doi.org/10.1029/2008JG000790.

    Article  Google Scholar 

  • Garcia RD, Reissig M, Queimaliños CP, Garcia PE, Dieguez MC. 2015. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Sci Total Environ 521–522:280–92.

    PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and temperature on metabolic rate. Science 293:2248–51.

    CAS  PubMed  Google Scholar 

  • Godsey SE, Kirchner JW, Clow DW. 2009. Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23:1844–64.

    CAS  Google Scholar 

  • Gonsior M, Valle J, Schmitt-Kopplin P, Hertkorn N, Bastviken D, Luek J, Harir M, Bastos W, Enrich-Prast A. 2016. Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences 13:4279–90.

    CAS  Google Scholar 

  • Graeber D, Gelbrecht J, Pusch MT, Anlanger C, von Schiller D. 2012. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci Total Environ 438:435–46.

    CAS  PubMed  Google Scholar 

  • Hale RL, Godsey SE. 2019. Dynamic stream network intermittence explains emergent dissolved organic carbon chemostasis in headwaters. Hydrol Process 33:1926–36.

    CAS  Google Scholar 

  • Hall RO, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall EJ, Voichick N, Behn KE. 2015. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–26.

    Google Scholar 

  • Hansen AM, Kraus TEC, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA. 2016. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol Oceanogr 61:1015–32.

    Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955.

    Google Scholar 

  • Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–7.

    CAS  PubMed  Google Scholar 

  • Hood E, Williams MW, McKnight DM. 2005. Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–55.

    CAS  Google Scholar 

  • Hooper RP, Christophersen N, Peters NE. 1990. Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, U.S.A. J Hydrol 116:321–43.

    CAS  Google Scholar 

  • Hornberger GM, Bencala KE, McKnight DM. 1994. Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25:147–65.

    CAS  Google Scholar 

  • Hosen JD, Aho KS, Appling AP, Creech EC, Fair JH, Hall RO, Kyzivat ED, Lowenthal RS, Matt S, Morrison J, Saiers JE, Shanley JB, Weber LC, Yoon B, Raymond PA. 2019. Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams. Limnol Oceanogr . https://doi.org/10.1002/lno.11127.

    Article  Google Scholar 

  • Hosen JD, Armstrong AW, Palmer MA. 2018. Dissolved organic matter variations in Coastal Plain wetland watersheds: the integrated role of hydrological connectivity, land use, and seasonality. Hydrol Process 32:1664–81.

    CAS  Google Scholar 

  • Hosen JD, McDonough OT, Febria CM, Palmer MA. 2014. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ Sci Technol 48:7817–24.

    CAS  PubMed  Google Scholar 

  • Hotchkiss ER, Sadro S, Hanson PC. 2018. Toward a more integrative perspective on carbon metabolism across lentic and lotic inland waters: integrative perspective on carbon metabolism. Limnol Oceanogr Lett . https://doi.org/10.1002/lol2.10081.

    Article  Google Scholar 

  • Huryn AD, Benstead JP, Parker SM. 2014. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95:2826–39.

    Google Scholar 

  • Inamdar S, Dhillon G, Singh S, Dutta S, Levia D, Scott D, Mitchell M, Van Stan J, McHale P. 2013. Temporal variation in end-member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment. Water Resour Res 49:1828–44.

    Google Scholar 

  • Inamdar S, Singh S, Dutta S, Levia D, Mitchell M, Scott D, Bais H, McHale P. 2011. Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. J Geophys Res . https://doi.org/10.1029/2011JG001735.

    Article  Google Scholar 

  • Kaplan LA, Cory RM. 2016. Chapter 6—Dissolved organic matter in stream ecosystems: forms, functions, and fluxes of watershed tea. In: Jones JB, Stanley EH, Eds. Stream ecosystems in a changing environment. Boston: Academic Press. p 241–320.

    Google Scholar 

  • Kaplan LA, Wiegner TN, Newbold JD, Ostrom PH, Gandhi H. 2008. Untangling the complex issue of dissolved organic carbon uptake: a stable isotope approach. Freshw Biol 53:855–64.

    CAS  Google Scholar 

  • Klovan JE, Imbrie J. 1971. An algorithm andFortran-iv program for large-scaleQ-mode factor analysis and calculation of factor scores. J Int Assoc Math Geol 3:61–77.

    Google Scholar 

  • Koch BJ, Febria CM, Cooke RM, Hosen JD, Baker ME, Colson AR, Filoso S, Hayhoe K, Loperfido JV, Stoner AMK, Palmer MA. 2015. Suburban watershed nitrogen retention: estimating the effectiveness of stormwater management structures. Elem Sci Anthr . https://doi.org/10.12952/journal.elementa.000063.

    Article  Google Scholar 

  • Koenig LE, Helton AM, Savoy P, Bertuzzo E, Heffernan JB, Hall RO, Bernhardt ES. 2019. Emergent productivity regimes of river networks. Limnol Oceanogr Lett . https://doi.org/10.1002/lol2.10115.

    Article  Google Scholar 

  • Lavonen EE, Gonsior M, Tranvik LJ, Schmitt-Kopplin P, Köhler SJ. 2013. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts. Environ Sci Technol 47:2264–71.

    CAS  PubMed  Google Scholar 

  • Lepot M, Aubin J-B, Clemens F. 2017. Interpolation in time series: an introductive overview of existing methods, their performance criteria and uncertainty assessment. Water 9:796.

    Google Scholar 

  • Lynch LM, Sutfin NA, Fegel TS, Boot CM, Covino TP, Wallenstein MD. 2019. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat Commun 10:1–11.

    Google Scholar 

  • Mantoura RFC, Dickson A, Riley JP. 1978. The complexation of metals with humic materials in natural waters. Estuar Coast Mar Sci 6:387–408.

    CAS  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–25.

    PubMed  Google Scholar 

  • Martínez-Pérez AM, Nieto-Cid M, Osterholz H, Catalá TS, Reche I, Dittmar T, Álvarez-Salgado XA. 2017. Linking optical and molecular signatures of dissolved organic matter in the Mediterranean Sea. Sci Rep 7:1–11.

    Google Scholar 

  • McDowell WH, Likens GE. 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr 58:177–95.

    Google Scholar 

  • McKnight D, Michael Thurman E, Wershaw Robert L, Harold Hemond. 1985. Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66:1339–52.

    CAS  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48.

    CAS  Google Scholar 

  • Mineau MM, Wollheim WM, Buffam I, Findlay SEG, Hall RO, Hotchkiss ER, Koenig LE, McDowell WH, Parr TB. 2016. Dissolved organic carbon uptake in streams: a review and assessment of reach-scale measurements. J Geophys Res Biogeosci 121:2015JG003204.

    Google Scholar 

  • Moatar F, Abbott BW, Minaudo C, Curie F, Pinay G. 2017. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resour Res 53:1270–87.

    CAS  Google Scholar 

  • Morling K, Herzsprung P, Kamjunke N. 2017. Discharge determines production of, decomposition of and quality changes in dissolved organic carbon in pre-dams of drinking water reservoirs. Sci Total Environ 577:329–39.

    CAS  PubMed  Google Scholar 

  • Murphy KR, Hambly A, Singh S, Henderson RK, Baker A, Stuetz R, Khan SJ. 2011. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environ Sci Technol 45:2909–16.

    CAS  PubMed  Google Scholar 

  • Murphy KR, Stedmon CA, Graeber D, Bro R. 2013. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5:6557–66.

    CAS  Google Scholar 

  • Newey WK, West KD. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703.

    Google Scholar 

  • Newey WK, West KD. 1994. Automatic lag selection in covariance matrix estimation. Rev Econ Stud 61:631–53.

    Google Scholar 

  • Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM. 2009. The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. Estuar Coast Shelf Sci 82:1–18.

    CAS  Google Scholar 

  • Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:102–17.

    Google Scholar 

  • Ohno T, Bro R. 2006. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Sci Soc Am J 70:2028.

    CAS  Google Scholar 

  • Opsahl S, Benner R. 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297–304.

    CAS  Google Scholar 

  • Osburn CL, Handsel LT, Mikan MP, Paerl HW, Montgomery MT. 2012. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ Sci Technol 46:8628–36.

    CAS  PubMed  Google Scholar 

  • Pace ML, Batt RD, Buelo CD, Carpenter SR, Cole JJ, Kurtzweil JT, Wilkinson GM. 2017. Reversal of a cyanobacterial bloom in response to early warnings. Proc Natl Acad Sci 114:352–7.

    CAS  PubMed  Google Scholar 

  • Paerl HW, Otten TG, Kudela R. 2018. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ Sci Technol . https://doi.org/10.1021/acs.est.7b05950.

    Article  PubMed  Google Scholar 

  • Parlanti E, Wörz K, Geoffroy L, Lamotte M. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organ Geochem 31:1765–81.

    CAS  Google Scholar 

  • Petrone KC, Fellman JB, Hood E, Donn MJ, Grierson PF. 2011. The origin and function of dissolved organic matter in agro-urban coastal streams. J Geophys Res Biogeosciences 116:G01028.

    Google Scholar 

  • Poulin BA, Ryan JN, Aiken GR. 2014. Effects of iron on optical properties of dissolved organic matter. Environ Sci Technol 48:10098–106.

    CAS  PubMed  Google Scholar 

  • R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.

  • Raymond PA, Saiers JE. 2010. Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209.

    Google Scholar 

  • Raymond PA, Saiers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16.

    PubMed  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53.

    Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WR. 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606.

    CAS  Google Scholar 

  • Rounds SA, Wilde FD, Ritz GF. 2013. Dissolved oxygen (ver. 3.0): U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A6, sec. 6.2. https://water.usgs.gov/owq/FieldManual/Chapter6/6.2_ver3.pdf. Accessed 14 Sept 2017.

  • Runkel RL, Crawford CG, Cohn TA. 2004. Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. Colorado Water Science Center.

  • Shin Y, Lee E-J, Jeon Y-J, Hur J, Oh N-H. 2016. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates. J Hydrol 540:538–48.

    CAS  Google Scholar 

  • Shultz M, Pellerin B, Aiken G, Martin J, Raymond P. 2018. High frequency data exposes nonlinear seasonal controls on dissolved organic matter in a large watershed. Environ Sci Technol 52:5644–52.

    CAS  PubMed  Google Scholar 

  • Siegel DA, Michaels AF. 1996. Quantification of non-algal light attenuation in the Sargasso Sea: implications for biogeochemistry and remote sensing. Deep Sea Res Part II Top Stud Oceanogr 43:321–45.

    CAS  Google Scholar 

  • Stedmon CA, Markager S. 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–97.

    CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–54.

    CAS  Google Scholar 

  • Stedmon CA, Markager S, Tranvik L, Kronberg L, Slätis T, Martinsen W. 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar Chem 104:227–40.

    CAS  Google Scholar 

  • Stubbins A, Lapierre J-F, Berggren M, Prairie YT, Dittmar T, del Giorgio PA. 2014. What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada. Environ Sci Technol 48:10598–606.

    CAS  PubMed  Google Scholar 

  • Sweet SK, Wolfe DW, DeGaetano A, Benner R. 2017. Anatomy of the 2016 drought in the Northeastern United States: Implications for agriculture and water resources in humid climates. Agric For Meteorol 247:571–81.

    Google Scholar 

  • Thurman EM. 1985. Organic geochemistry of natural waters. Boston, MA: Kluwer Academic.

    Google Scholar 

  • Tiwari JL, Hobbie JE. 1976. Random differential equations as models of ecosystems: Monte Carlo simulation approach. Math Biosci 28:25–44.

    Google Scholar 

  • Tranvik LJ, Bertilsson S. 2008. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4:458–63.

    Google Scholar 

  • United States Geological Survey. 2016. USGS water data for the Nation: U.S. Geological Survey National Water Information System database. https://doi.org/10.5066/F7P55KJN. Accessed 14 Sept 2017.

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–7.

    Google Scholar 

  • Wagner K, Bengtsson MM, Findlay RH, Battin TJ, Ulseth AJ. 2017. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. J Geophys Res-Biogeosci 122:1806–20.

    CAS  Google Scholar 

  • Wagner S, Fair JH, Matt S, Hosen JD, Raymond P, Saiers J, Shanley JB, Dittmar T, Stubbins A. 2019. Molecular hysteresis: hydrologically driven changes in riverine dissolved organic matter chemistry during a storm event. J Geophys Res Biogeosci 124:759–74.

    CAS  Google Scholar 

  • Wagner S, Jaffé R, Cawley K, Dittmar T, Stubbins A. 2015. Associations between the molecular and optical properties of dissolved organic matter in the Florida everglades, a model coastal wetland system. Front Chem . https://doi.org/10.3389/fchem.2015.00066/full.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker SA, Amon RMW, Stedmon C, Duan S, Louchouarn P. 2009. The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. J Geophys Res . https://doi.org/10.1029/2009JG000990.

    Article  Google Scholar 

  • Walker SA, Amon RMW, Stedmon CA. 2013. Variations in high-latitude riverine fluorescent dissolved organic matter: a comparison of large Arctic rivers. J Geophys Res Biogeosci 118:1689–702.

    CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–8.

    CAS  PubMed  Google Scholar 

  • Williams CJ, Frost PC, Xenopoulos MA. 2013. Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds. Ecol Appl 23:1384–95.

    PubMed  Google Scholar 

  • Wilson HF, Xenopoulos MA. 2008. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11:555–68.

    CAS  Google Scholar 

  • Wilson HF, Xenopoulos MA. 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41.

    CAS  Google Scholar 

  • Wollheim WM, Stewart RJ, Aiken GR, Butler KD, Morse NB, Salisbury J. 2015. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network. Geophys Res Lett 42:6671–9.

    CAS  Google Scholar 

  • Wuertz D, Miklovic YC with contribution from M, Boudt C, Chausse P, others. 2016. fGarch: Rmetrics—autoregressive conditional heteroskedastic modelling. https://CRAN.R-project.org/package=fGarch.

  • Wünsch UJ, Stedmon CA, Tranvik LJ, Guillemette F. 2018. Unraveling the size-dependent optical properties of dissolved organic matter: size-dependent optical properties of DOM. Limnol Oceanogr 63:588–601.

    Google Scholar 

  • Yamashita Y, Boyer JN, Jaffé R. 2013. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Cont Shelf Res 66:136–44.

    Google Scholar 

  • Yamashita Y, Kloeppel BD, Knoepp J, Zausen GL, Jaffé R. 2011. Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14:1110–22.

    CAS  Google Scholar 

  • Yao X, Zhang Y, Zhu G, Qin B, Feng L, Cai L, Gao G. 2011. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–55.

    CAS  PubMed  Google Scholar 

  • Yard MD, Bennett GE, Mietz SN, Coggins LG, Stevens LE, Hueftle S, Blinn DW. 2005. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ. Ecol Model 183:157–72.

    Google Scholar 

  • Yoon B, Raymond PA. 2012. Dissolved organic matter export from a forested watershed during Hurricane Irene. Geophys Res Lett . https://doi.org/10.1029/2012GL052785.

    Article  Google Scholar 

  • Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP. 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–6.

    CAS  PubMed  Google Scholar 

  • Zarnetske JP, Bouda M, Abbott BW, Saiers J, Raymond PA. 2018. Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophys Res Lett 45:11702–11.

    CAS  Google Scholar 

  • Zhang Y, Liu X, Wang M, Qin B. 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org Geochem 55:26–37.

    Google Scholar 

  • Zimmer MA, McGlynn BL. 2018. Lateral, vertical, and longitudinal source area connectivity drive runoff and carbon export across watershed scales. Water Resour Res 54:1576–98.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (#1340749, #1442140, and #1824613). We thank Elizabeth Creech, Ashley Gibbs, Michaela Hobbs, Rachel Lowenthal, Kevin Ryan, William Sobczak, Sasha Wagner, and Griffin Walsh for assistance in the field and discussions that improved the design and execution of this project. We thank the anonymous reviewers whose comments improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Hosen.

Additional information

J. H. Fair: formerly at School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA.

Author Contributions

JDH and PAR devised and led the study. JDH, KSA, JHF, EK, SM, JM, AS, LW, BY, and PAR collected and analyzed samples. Statistical analysis was conducted by JDH with assistance from AS and PAR. The manuscript was written by JDH with contributions from KSA, JHF, EDK, SM, JM, AS, LW, BY, and PAR.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11569 kb)

Supplementary material 2 (CSV 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosen, J.D., Aho, K.S., Fair, J.H. et al. Source Switching Maintains Dissolved Organic Matter Chemostasis Across Discharge Levels in a Large Temperate River Network. Ecosystems 24, 227–247 (2021). https://doi.org/10.1007/s10021-020-00514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00514-7

Keywords

Navigation