Skip to main content
Log in

Methylation of Exogenous Promoters Regulates Soybean Isoflavone Synthase (GmIFS) Transgene in T0 Transgenic Wheat (Triticum aestivum)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

DNA methylation is one epigenetic strategy for gene regulation in living organisms. In this study, the expression of soybean isoflavone synthase (GmIFS) transgene in T0 transgenic wheat plants was investigated at the RNA and the final product genestin level. T0 plants showed variations in the GmIFS expression. Methylation status of the exogenous promoters (35S or Oleocin (OL)) proximal sequence was investigated in T0 plants using bisulphite sequencing to disclose their methylation in parallel with the GmIFS level of expression. Results concluded that the high GmIFS expressers of T0 plants exhibited high methylation of exogenous promoter proximal sequences as well as low expression of DNA methyltransferases (Mets). Variation in GmIFS was associated with the level of methylation in the 35S or OL promoters. High expression of GmIFS was negatively correlated with methylation level of 35S and OL promoter proximal regions. In 35S promoter, methylation level of the CpG sites –56 and –88 is strongly linked to GmIFS expression and is involved in the regulation of GmIFS gene. In OL promoter, the CpG site could be involved in the regulation of the GmIFS. Wheat Met3 expression varied among T0 transgenic plants. Its expression profile could explain the regulation of GmIFS transgene by methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Li, Y. and Tollefsbol, T.O., DNA methylation detection: bisulfite genomic sequencing analysis, Meth. Mol. Biol., 2011, vol. 791, pp. 11–21.

    Article  CAS  Google Scholar 

  2. Känel, T. and Huber, A.R., DNA methylation analysis, Swiss. Med. Wkly., 2013, vol. 43, p. w13799.

    Google Scholar 

  3. Akimoto, K., Katakami, H., Kim, H., Ogawa, E., Sano, C.M., Wada, Y., and Sano, H., Epigenetic inheritance in rice plants, Ann. Bot., 2007, vol. 100, pp. 205–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones, L., Ratcliff, F., and Baulcombe, D.C., RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance, Curr. Biol., 2001, vol. 11, pp. 747–757.

    Article  CAS  PubMed  Google Scholar 

  5. Law, J.A. and Jacobsen, S.E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 2010, vol. 11, pp. 204–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han, S. and Wagner, D., Role of chromatin in water stress responses in plants, J. Exp. Bot., 2014, vol. 65, no. 10, pp. 2785–2799.

    Article  CAS  PubMed  Google Scholar 

  7. Zilberman, D., An evolutionary case for functional gene body methylation in plants and animals, Genome Biol., 2017, vol. 18, p. 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chan, S.W., Henderson, I.R., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet., 2005, vol. 6, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeuchi, M., Iwase, A., and Sugimoto, K., Control of plant cell differentiation by histone modification and DNA methylation. Curr. Opin. Plant Biol, 2015, vol. 28, pp. 60–67.

    Article  CAS  PubMed  Google Scholar 

  10. Fedoroff, N.V., Transposable elements, epigenetics, and genome evolution, Science, 2012, no. 338, no. 6108, pp. 758–767.

  11. Demeulemeester, M., Van Stallen, N., and De Proft, M., Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization, Plant Sci., 1999, vol. 142, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  12. Yaish, M.W., Epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution, Front. Plant. Sci., 2017, vol. 8, p. 1983.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yaish, M.W., Al-Lawati, A., Al-Harrasi, I., and Patankar, H.V., Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula), BMC Genomics, 2018, vol. 19, no. 1, p. 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yong-Villalobos, L., González-Morales, S.I., Wrobel, K., Gutiérrez-Alanis, D., Cervantes-Perćz, S.A., Hayano-Kanashiro, C., Oropeza-Aburto, A., Cruz-Ramírez, A., Martínez, O., and Herrera-Estrella, L., Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 52, pp. E7293–E7302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takatsuka, H. and Umeda, M., Epigenetic control of cell division and cell differentiation in the root apex, Front. Plant Sci., 2015, vol. 6, p. 1178.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Suzuki, M.M. and Bird, A., DNA methylationl and scapes: provocative insights from epigenomics, Nat. Rev. Genet., 2008, vol. 9, pp. 465–476.

    Article  CAS  PubMed  Google Scholar 

  17. Takuno, S. and Gaut, B.S., Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly, Mol. Biol. Evol., 2012, vol. 29, pp. 219–227.

    Article  CAS  PubMed  Google Scholar 

  18. Bird, A., DNA methylation patterns and epigenetic memory, Gen. Dev., 2002, vol. 16, pp. 6–21.

    Article  CAS  Google Scholar 

  19. Saze, H., Tsugane, K., Kanno, T., and Nishimura, T., DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation, Plant Cell Physiol., 2012, vol. 53, pp. 766–784.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Ellegrini, M., Jacobsen, S.E., and Ecker, J.R., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis,Cell, 2006, vol. 126, pp. 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  21. Hauser, M., Aufsatz, W., Jonak, C., and Luschnig, C., Transgenerational epigenetic inheritance in plants, Biochim. Biophys. Acta, 2011, vol. 1809, no. 8, pp. 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahu, P.P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., and Prasad, M., Epigenetic mechanisms of plant stress responses and adaptation, Plant Cell Rep., 2013, vol. 32, pp. 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  23. Colaneri, A.C. and Jones, A.M., Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential, PLoS One, 2013, vol. 8, e59878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lira-Medeiros, C.F., Parisod, C., Fernandes, R.A., Mata, C.S., Cardoso, M.A., and Ferreira, PC, Epigenetic variation in mangrove plants occurring in contrasting natural environment, PLoS One, 2010, vol. 5, e10326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang, W.S., Pan, Y.J., Zhao, X.Q., Dwivedi, D., Zhu, L.H., Ali, J., Fu, B.Y., and Li, Z.K., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.), J. Exp. Bot., 2011, vol. 62, pp. 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  26. Tricker, P.J., Gibbings, J.G., Rodriguez-Lopez, C.M., Hadley, P., and Wilkinson, M.J., Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development, J. Exp. Bot., 2012, vol. 63, pp. 3799–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tricker, P.J., Lopez, C.M., Gibbings, G., Hadley, P., and Wilkinson, M.J., Transgenerational, dynamic methylation of stomata genes in response to low relative humidity, Int. J. Mol. Set., 2013, vol. 14, pp. 6674–6689.

    Article  CAS  Google Scholar 

  28. Berdasco, M., Alcázar, R., García-Ortiz, M.V., Ballestar, K., Fernández, A.F., et al., Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells, PLoS One, 2008, vol. 3, no. 10, e3306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. El-Shehawi, A.M., Fahmi, A.I., Elseehy, M.M., and Nagaty, H.H., Enhancement of nutritional quality of wheat (Triticum aestivum) by metabolic engineering of isoflavone pathway, Am. J. Biochem. Biotechnol., 2013, vol. 9, no. 4, vol. 407–417.

  30. Kim, J.H., Park, F.J., Lee, T.K., and Lee, W.S., Genomic sequences of the soybean 24 kDa oleosin genes and initial analysis of their promoter sequences, Mol. Cells, 1996, vol. 6, no. 4, pp. 393–399.

    CAS  Google Scholar 

  31. Dai, Y., Ni1, Z., Dai, J., Zhao, T., and Sun, Q., Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.), Biochim. Biophys. Acta, 2005, vol. 1729, pp. 118–125.

    Article  CAS  PubMed  Google Scholar 

  32. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. U. S. A., 1984, vol. 81, no. 24, pp. 8014–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed, M.M., El-Shazly, A.S., El-Shehawi, A.M., and Alkafafy, M.E., Antiobesity effects of Taif and Egyptian pomegranates: molecular study, Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 4, pp. 598–609.

    Article  CAS  PubMed  Google Scholar 

  34. Carr, I.M., Valleley, E.M.A., Cordery, S.F., Markham, A.F., and Bonthron, D.T., Sequence analysis and editing for bisulphite genomic sequencing projects, Nucleic Acids Res., 2007, vol. 35, e79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jorgensen, K., Rasmussen. A.V., Morant, M., Nielsen, A.H., and Bjarnholt, N., et al., Metabolon formation and metabolic channeling in the biosynthesis of plant natural products, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 280–291.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, R., Hu, Y., Li, J., and Lin, Z., Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway, Metab. Eng., 2007, vol. 9, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Bucherna, N., Szabo, E., Heszky, L.S., and Nagy, I., DNA methylation and gene expression differences during alternative in vitro morphogenic processes in eggplant (Solanum melongena L.), In Vitro Cell. Dev. Biol.—Plant, 2001, vol. 37, pp. 672–677.

    Article  CAS  Google Scholar 

  38. Tolley, B.J., Woodfield, H., Wanchana, S., Bruskiewich, R., and Hibberd, J.M., Light-regulated and cell-specific methylation of the maize PEPC promoter, J. Exp. Bot., 2012, vol. 63, no. 3, pp. 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  39. Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E., and Bestor, T.H., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 2006, vol. 311, pp. 395–8.

    Article  CAS  PubMed  Google Scholar 

  40. Jeltscha, A., Ehrenhofer-Murray, A., Jurkowski, T.P., Lykoc, F., Reuterd, G., Ankri, S., Nellenf, W., Schaeferg, M., and Helmh, M., Mechanism and biological role of Dnmt2 in nucleic acid methylation, RNA Biol., 2017, vol. 14, no. 9, pp. 1108–1123.

    Article  Google Scholar 

  41. Moritoh, S., Eun, C., Ono, E., Asao, H., Okano, Y., Yamaguchi, K., Shimatani, Z., Koizumi, A., and Terada, R., Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation, Plant J., 2012, vol. 71, pp. 85–98.

    Article  CAS  PubMed  Google Scholar 

  42. Cao, X., Jacobsen, S.E., Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methytransferse genes, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 16491–16498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, X., Yazaki, J., Sundaresan, A., et al., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis,Cell, 2006, vol. 126, pp. 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  44. Kurihara, Y., Matsui, A., Kawashima, M., et al., Identification of the candidate genes regulated by RNA-directed DNA methylation, Biochem. Biophys. Res. Commun., 2008, vol. 376, pp. 553–557.

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez Lopez, C.M. and Wilkinson, M.J., Epi-fingerprinting and epi-interventions for improved crop production and food quality, Front. Plant Sci., 2015, vol. 6, p. 397.

    PubMed  PubMed Central  Google Scholar 

  46. Wei, X., Song, X., Weim, L., Tang, S., Sun, J., Hu, P., and Cao, X., An epiallele of rice AK1 affects photosynthetic capacity, J. Integr. Plant Biol., 2017, vol. 59, no. 3, pp. 158–163.

    Article  CAS  PubMed  Google Scholar 

  47. Song, Q., Zhang, T., Stelly, D.M., and Chen, Z.J., Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons, Genome Biol., 2017, vol. 18, pp. 1, p. 99.

Download references

ACKNOWLEDGMENTS

This study was partially supported by Taif University (grant no. 1-437-4852), P.I. Ahmed M. El-Shehawi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohamed El-Shehawi.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR CONTRIBUTION

Authors have contributed equally to this manuscript.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elseehy, M.M., El-Shehawi, A.M. Methylation of Exogenous Promoters Regulates Soybean Isoflavone Synthase (GmIFS) Transgene in T0 Transgenic Wheat (Triticum aestivum). Cytol. Genet. 54, 271–282 (2020). https://doi.org/10.3103/S0095452720030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720030032

Keywords:

Navigation