Skip to main content
Log in

Climate Factors and Wolbachia Infection Frequencies in Natural Populations of Drosophila melanogaster

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The endosymbiotic bacteria Wolbachia are widespread in natural populations of Drosophila melanogaster, which is a cosmopolitan and synanthropic species. Various aspects of Wolbachia infection are studied in many arthropod species, including fruit flies. However, the influence of climatic factors on the level of Wolbachia infection in natural populations of fruit flies has not been studied in detail. The influence of mean temperature, precipitation, and potential evaporation was investigated on Wolbachia infection rates in ten D. melanogaster populations (collected in Europe) and newly obtained estimates were combined with the data from other studies for different continents and for different climatic zones (280 populations, 10 806 isofemale lines). The effect of climatic factors on the infection frequency was revealed. The highest infection rates are observed in the mean annual temperature range of 20–25°C, which corresponds to fly rearing conditions in the laboratory. The clinal distribution of Wolbachia infection rates in the Eurasian fruit fly populations was described. Logistic regression models showed that climatic factors have a stronger impact on bacterial infection rates within climatic zones rather than continents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O’Neill, S.L., Werren, J.H., and Hoffmann, A.A., Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford University Press, 1997.

    Google Scholar 

  2. Teixeira, L., Ferreira, A., and Ashburner, M., The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster,PLoS Biol., 2008, vol, 6, no. 12, e1000002.

    Article  Google Scholar 

  3. Serga, S., Maistrenko, O., Rozhok, A., Mousseau, T., and Kozeretska, I., Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster,Symbiosis, 2014, vol. 63, no. 1, pp. 11–17.

    Article  Google Scholar 

  4. Hoffmann, A.A., Clancy, D.J., and Merton, E., Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster,Genetics, 1994, vol. 136, no. 3, pp. 993–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Riegler, M., Sidhu, M., Miller, W.J., and O’Neill, S.L., Evidence for a global Wolbachia replacement in Drosophila melanogaster, Curr. Biol., 2005, vol. 15, no. 15, pp. 1428–33.

    Article  CAS  Google Scholar 

  6. Ilinsky, Y.Y. and Zakharov, I.K., The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster,Russ. J. Genet., 2007, vol. 43, no. 7, pp. 748–756.

    Article  CAS  Google Scholar 

  7. Richardson, M.F., Weinert, L.A., Welch, J.J., Linheiro, R.S., Magwire, M.M., Jiggins, F.M., and Bergman, C.M., Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster, PLoS Genet., 2012, vol. 8, no. 12, e1003129.

    Article  Google Scholar 

  8. Kriesner, P., Conner, W.R., Weeks, A.R., Turelli, M., and Hoffmann, A.A., Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy, Evolution, 2016, vol. 70, no. 5, pp. 979–997.

    Article  Google Scholar 

  9. Serga, S.V. and Kozeretskaya, I.A., The puzzle of Wolbachia spreading out through natural populations of Drosophila melanogaster,Zh. Obshch. Biol., 2013, vol. 74, no. 2, pp. 99–111.

    CAS  PubMed  Google Scholar 

  10. Corbin, C., Heyworth, E.R., Ferrari, J., and Hurst, G.D., Heritable symbionts in a world of varying temperature, Heredity, 2017, vol. 118, no. 1, p. 10–20.

    Article  CAS  Google Scholar 

  11. Iturbe-Ormaetxe, I., Walker, T., and O’Neill, S.L., Wolbachia and the biological control of mosquito-borne disease, EMBO Rep., 2011, vol. 12, no. 6, pp. 508–518.

    Article  CAS  Google Scholar 

  12. Rubel, F., Brugger, K., Haslinger, K., and Auer, I., The climate of the European Alps: shift of very high resolution Köppen–Geiger climate zones 1800–2100, Meteorologische Zeitschrift, 2017, vol. 26, no. 2, pp. 115–25. doi 10,1127/metz/2016/0816

  13. O’Neill, S.L., Giordano, R., Colbert, A.M., Karr, T.L., and Robertson, H.M., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 7, pp. 2699–2702.

    Article  Google Scholar 

  14. Zhou, W., Rousset, F., and O’Neill, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. London, Ser. B, 1998, vol. 265, no. 1395, pp. 509–515.

    Article  CAS  Google Scholar 

  15. Team, R.C., R: A Language and Environment for Statistical Computing, 2018.

  16. Gora, N.V., Kostenko, N.D., Maistrenko, O.M., Serga, S.V., and Kozeretska, I.A., The lack of correlation between the level of radioactive contamination and infection with Wolbachia in natural populations of Drosophila melanogaster from Ukraine, J. V.N. Karazin Kharkiv Nat. Univ. Ser. Biol., 2016, vol. 26, pp. 60–64.

    Google Scholar 

  17. Gora, N.V., Serga, S.V., Maistrenko, O.M., Protsenko, O.V., and Kozeretska, I.A., The relationship of Wolbachia infection and different phenotypes in the Drosophila melanogaster natural populations from radioactively polluted and clear areas in Ukraine, Visn. Ukr. Tov. Genet. Sel., 2018, vol. 16, no. 2, pp. 227–234.

    Article  Google Scholar 

  18. Gora, N.V., Serga, S.V., Maistrenko, O.M., and Kozeretska, I.A., Dynamics of frequencies of Wolbachia genotypes in Drosophila melanogaster population from Uman’ under influence of climate factors, Microbiol. Biotechnol., 2019, vol. 1, pp. 6–15.

    Google Scholar 

  19. Hoffmann, A.A., Hercus, M., and Dagher, H., Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster,Genetics, 1998, vol. 148, no. 1, pp. 221–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Montenegro, H., Solferini, V.N., Klaczko, L.B., and Hurst, G.D.D., Male-killing Spiroplasma naturally infecting Drosophila melanogaster,Insect. Mol. Biol., 2005, vol. 14, no. 3, pp. 281–287.

    Article  CAS  Google Scholar 

  21. Verspoor, R.L., Haddrill, P.R., Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations, PLoS One, 2011, vol. 6, no. 10, e26318.

    Article  CAS  Google Scholar 

  22. Ventura, I.M., Martins, A.B., Lyra, M.L., Andrade, C.A., Carvalho, K.A., and Klaczko, L.B., Spiroplasma in Drosophila melanogaster populations: prevalence, male-killing, molecular identification, and no association with Wolbachia,Microb. Ecol., 2012, vol. 64, no. 3, pp. 794–801.

    Article  Google Scholar 

  23. Early, A.M., Clark, A.G., Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations, Mol. Ecol., 2013, vol. 22, no. 23, pp. 5765–5778.

    Article  Google Scholar 

  24. Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ramia, M., Tarone, A.M., and Magwire, M.M., Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines, Genome Res., 2014, vol. 24, no. 7, pp. 1193–1208.

    Article  CAS  Google Scholar 

  25. Webster, C.L., Waldron, F.M., Robertson, S., Crow-son, D., Ferrari, G., Quintana, J.F., and Lazzaro, B.P., The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster,PLoS Biol., 2015, vol. 13, no. 7, e1002210.

    Article  Google Scholar 

  26. Bykov, R.A., Yudina, M.A., Gruntenko, N.E., Zakharov, I.K., Voloshina, M.A., Melashchenko, E.S., and Ilinsky, Y.Y., Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster,BMC Evol. Biol., 2019, vol. 19, no. 1, p. 48.

    Article  Google Scholar 

  27. Roshina, N., Symonenko, A., Krementsova, A., Tsybul’ko, E.A., Alatortsev, V.E., Pasyukova, E.G., and Mukha, D., Drosophila melanogaster inhabiting northern regions of European Russia are infected with Wolbachia which adversely affects their life span, Vavilov J. Genet. Breed., 2018, vol. 22, no. 5, pp. 568–573.

    Article  Google Scholar 

  28. Harris, I.P.D.J., Jones, P.D., Osborn, T.J., and Lister, D.H., Updated high-resolution grids of monthly climatic observations—the CRU TS3,10 Dataset, Int. J. Climatol., 2014, vol. 34, no. 3, pp. 623–642.

    Article  Google Scholar 

  29. Hijmans, R.J., Raster: Geographic Data Analysis and Modeling, 2019.

  30. Pierce D., ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, 2019.

  31. Charlesworth, J., Weinert, L.A., Araujo-Jnr, E.V., and Welch, J.J., Wolbachia, Cardinium and climate: an analysis of global data, bioRxiv, 2018, vol. 490284.

  32. Dillon, M.E., Wang, G., Garrity, P.A., and Huey, R.B., Review: thermal preference in Drosophila,Therm. Biol., 2009, vol. 34, no. 3, pp. 109–119.

    Article  Google Scholar 

  33. Truitt, A.M., Kapun, M., Kaur, R., and Miller, W.J., Wolbachia modifies thermal preference in Drosophila melanogaster, Environ. Microbiol., 2018.

  34. Perrot-Minnot, M.J., Guo, L.R., and Werren, J.H., Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis effects on compatibility, Genetics, vol. 143, no. 2, pp. 961–972.

  35. Rahimi-Kaldeh, S., Ashouri, A., Bandani, A., and Tomioka, K., The effect of Wolbachia on diapause, fecundity, and clock gene expression in Trichogramma brassicae (Hymenoptera: Trichogrammatidae), Dev. Genes Evol., 2017, vol. 227, no. 6, pp. 401–410.

    Article  CAS  Google Scholar 

  36. Ruang-Areerate, T., Kittayapong, P., McGraw, E.A., Baimai, V., and O’Neill, S.L., Wolbachia replication and host cell division in Aedes albopictus,Curr. Microbiol., 2004, vol. 49, no. 1, pp. 10–12.

    Article  CAS  Google Scholar 

  37. Nunes, M.D., Nolte, V., and Schlutterer, C, Non-random Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes, Mol. Biol. Evol., 2008, vol. 25, no. 11, pp. 2493–2498.

    Article  CAS  Google Scholar 

  38. Ilinsky, Y., Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes, PLoS One, 2013, vol. 8, no. 1, pp. 1–11.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Pavel Kovalenko, a student at Taras Shevchenko National University of Kyiv, and Oleksii Bilousov, a researcher at Columbia University, for their assistance in collecting flies from Uman and Lausanne, respectively.

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gora.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gora, N.V., Serga, S.V., Maistrenko, O.M. et al. Climate Factors and Wolbachia Infection Frequencies in Natural Populations of Drosophila melanogaster. Cytol. Genet. 54, 189–198 (2020). https://doi.org/10.3103/S0095452720030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720030044

Keywords:

Navigation