Skip to main content
Log in

Combustion in miscible displacement for high-pressure air injection

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper describes miscible displacement upon air injection in a porous medium saturated with oil corresponding to conditions of high-pressure air injection (HPAI). We assume that injection fluids and produced fluids are fully miscible with the oil at the prevailing high pressure. We use three pseudo-components, viz., oxygen, oil, and an inert component, which includes nitrogen, carbon dioxide, etc. To model the fingering instabilities, we follow a similar procedure as proposed by Koval (SPE J. 3(02):145–154, 1963) and include the reaction between oxygen and oil in the Koval model. The equations are solved numerically, using a finite element software package (COMSOL). The results show that a combustion wave is formed. We study the performance at low and high viscosities and show that the reaction improves the speed and degree of recovery at later times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adetunji, L., Teigland, R.: Light-oil air-injection performance: sensitivity to critical parameters. In: SPE Annual Technical Conference and Exhibition, volume SPE 96844 (2005)

  2. Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134, 229–247 (2003)

    Article  Google Scholar 

  3. Barzin, Y., Moore, R.G., Mehta, S.A., Ursenbach, M.G., Tabasinejad, F.: Effect of interstitial water saturation and air flux on combustion kinetics of high pressure air injection (HPAI). In: SPE Western Regional Meeting, volume SPE 133599 (2010)

  4. Blackwell, R.J., Rayne, J.R., Terry, W.M.: Factors influencing the efficiency of miscible displacement. AIME Petroleum Trans. 217, 1–8 (1959)

    Article  Google Scholar 

  5. Blackwell, RJ, Terry, WM, Rayne, JR, Lindley, DC, et al., Henderson, JR: Recovery of oil by displacements with water-solvent mixtures. Petroleum Transactions, 219 (1960)

  6. Booth, R.J.: Miscible flow through porous media. PhD thesis. University of Oxford (2008)

  7. Bruining, J., Mailybaev, A.A., Marchesin, D.: Filtration combustion in wet porous medium. J. SIAM Appl. Math. 70, 1157–1177 (2009)

    Article  Google Scholar 

  8. Chen, Z., Wang, L., Duan, Q., Zhang, L., Ren, S.: High-pressure air injection for improved oil recovery: Low-temperature oxidation models and thermal effect. Energy & Fuels 27(2), 780–786 (2013)

    Article  Google Scholar 

  9. Clara, C., Durandeau, M., Quenault, G., Nguyen, T.H.: Laboratory studies for light-oil air injection projects: potential application in Handil field. SPE Reservoir Eval. Eng. 3(3), 239–248 (2000)

    Article  Google Scholar 

  10. Denney, D.: 30 years of successful high-pressure air injection: Performance evaluation of Buffalo field, South Dakota. J. Petrol. Tech. 63(01), 50–53 (2011)

    Article  Google Scholar 

  11. Fassihi, M.R., Yannimaras, D.V., Westfall, E.E., Gillham, T.H.: Economics of light oil air injection projects. In: SPE/DOE Improved Oil Recovery Symposium, volume SPE 3593-MS (1996)

  12. Gargar, N.K., Mailybaev, A.A., Marchesin, D., Bruining, H.: Effects of water on light oil recovery by air injection. Fuel 137, 200–210 (2014)

    Article  Google Scholar 

  13. Gargar, N.K., Mailybaev, A.A, Marchesin, D., Bruining, H.: Diffusive effects on recovery of light oil by medium temperature oxidation. Transp. Porous Media 105(1), 191–209 (2014)

    Article  Google Scholar 

  14. Greaves, M., Ren, S., Rathbone, R., Fishlock, T., Ireland, R.: Improved residual light oil recovery by air injection (LTO process). Journal of Canadian Petroleum Technology, 39(1) (2000)

  15. Gutierrez, D., Taylor, A., Kumar, V., Ursenbach, M., Moore, R., Mehta, S.: Recovery factors in high-pressure air injection projects revisited. SPE Reservoir Eval. Eng. 11(6), 1097–1106 (2008)

    Article  Google Scholar 

  16. Endo Kokubun, M.A., Gargar, N.K., Bruinning, H., Mailybaev, A.A.: Multicomponent effects in liquid–gas filtration combustion. Combust. Flame 169, 51–62 (2016)

    Article  Google Scholar 

  17. Koval, E.J.: A method for predicting the performance of unstable miscible displacement in heterogeneous media. SPE J. 3(02), 145–154 (1963)

    Google Scholar 

  18. Mailybaev, A., Bruining, J., Marchesin, D.: Analytical formulas for in-situ combustion. SPE J. 16(03), 513–523 (2011)

    Article  Google Scholar 

  19. Mailybaev, A.A., Marchesin, D., Bruining, J.: Resonance in low-temperature oxidation waves for porous media. SIAM J. Math. Anal. 43, 2230 (2011)

    Article  Google Scholar 

  20. Mailybaev, A.A., Marchesin, D., Bruining, J.: Recovery of light oil by medium temperature oxidation. Transp. Porous Media 97(3), 317–343 (2013)

    Article  Google Scholar 

  21. Montes, A.R., Gutierrez, D., Moore, R.G., Mehta, S.A., Ursenbach, M.G.: Is high-pressure air injection (HPAI) simply a flue-gas flood J. Can. Pet. Technol. 49(2), 56–63 (2010)

    Article  Google Scholar 

  22. Moore, R.G., Mehta, S.A., Ursenbach, M.G.: A guide to high pressure air injection (HPAI) based oil recovery. In: SPE/DOE Improved Oil Recovery Symposium, volume SPE 75207-MS (2002)

  23. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  24. Ren, S.R., Greaves, M., Rathbone, R.R.: Air injection LTO process: an IOR technique for light-oil reservoirs. SPE J. 7(1), 90–99 (2002)

    Article  Google Scholar 

  25. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1983)

    Book  Google Scholar 

  26. Stalkup, F.I. Jr.: Status of miscible displacement. J. Petrol. Tech. 35(04), 815–826 (1983)

    Article  Google Scholar 

  27. Turta, A.T., Singhal, A.K.: Reservoir engineering aspects of light-oil recovery by air injection. SPE Reserv. Eval. Eng. 4(4), 336–344 (2001)

    Article  Google Scholar 

Download references

Funding

This work was supported by the CNPq (grants 303047/2018-6, 406431/2018-3) and the Program FAPERJ Pensa Rio (grant E-26/210.874/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khoshnevis Gargar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargar, N.K., Bruining, J., Kokubun, M.A.E. et al. Combustion in miscible displacement for high-pressure air injection. Comput Geosci 24, 1663–1672 (2020). https://doi.org/10.1007/s10596-020-09977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09977-y

Keywords

Navigation