Skip to main content

Advertisement

Log in

Serum Ceruloplasmin Is the Candidate Predictive Biomarker for Acute Aortic Dissection and Is Related to Thrombosed False Lumen: a Propensity Score–Matched Observational Case–Control Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Acute aortic dissection (AAD), one of the fatal diseases observed at the department of vascular surgery, is associated with a great mortality rate at the early stage. Ceruloplasmin (CP) is the plasma protein that functions as a copper transporter. The current retrospective research was carried out to assess CP contents and to examine the possible part in diagnosing patients with AAD. In addition, propensity score matching (PSM) was also utilized for reducing the bias in case screening as well as the clinical confounders. Using PSM, this study included 85 pairs of AAD cases (Stanford A and B dissection) and matched controls, and their CP levels were also detected through enzyme-linked immunosorbent assay (ELISA). Additionally, the relative clinical data were extracted from participants included in this study. After PSM adjustment for clinical variables, including gender, age, body mass index (BMI), heart ratio (HR), smoking, hypertension, diabetes mellitus, coronary heart disease (CHD), and stroke, the serum CP contents among AAD cases were remarkably increased compared with those among the normal subjects. Besides, the CP contents showed independent association with the AAD risk. Typically, the CP level was significantly positively correlated with platelet (R = 0.329) or C-reactive protein (R = 0.340) level. Meanwhile, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.929 when CP was used to diagnose AAD, and the best threshold value was 36.82mg/dL. Serum CP content significantly increased in cases with thrombosed false lumen (FL) relative to those in patent FL cases. Results of logistic regression analysis suggested that a greater CP content indicated an increased thrombosed FL risk (OR = 1.11; 95% CI: 1.01–1.23; P = 0.040). Findings in this study suggest that serum ceruloplasmin contents evidently increased among acute aortic dissection cases. CP shows close correlation with the inflammatory factors among AAD cases. Further, CP may serve as the candidate biomarker to diagnose AAD and to identify an increased risk of thrombosed false lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Changcheng Ma and Yanshuo Han collected blood sample and biobank. Changcheng Ma and Yanshuo Han conducted the experiment. Feng Shi and Yanshuo Han collected clinical data. Chao Ji and Yanshuo Han performed the analysis and drafted the manuscript. Haibin Zhao and Yanshuo Han designed the study and revised the manuscript. All authors read and approved the final manuscript.

References

  1. Nazerian P, Mueller C, Soeiro AM, Leidel BA, Salvadeo SAT, Giachino F, Vanni S, Grimm K, Oliveira MT Jr, Pivetta E, Lupia E, Grifoni S, Morello F, Investigators AD (2018) Diagnostic accuracy of the aortic dissection detection risk score plus D-Dimer for acute aortic syndromes: the ADvISED prospective multicenter study. Circulation 137(3):250–258. https://doi.org/10.1161/CIRCULATIONAHA.117.029457

    Article  CAS  PubMed  Google Scholar 

  2. Sheikh AS, Ali K, Mazhar S (2013) Acute aortic syndrome. Circulation 128(10):1122–1127. https://doi.org/10.1161/CIRCULATIONAHA.112.000170

    Article  PubMed  Google Scholar 

  3. Hagan PG, Nienaber CA, Isselbacher EM, Bruckman D, Karavite DJ, Russman PL, Evangelista A, Fattori R, Suzuki T, Oh JK, Moore AG, Malouf JF, Pape LA, Gaca C, Sechtem U, Lenferink S, Deutsch HJ, Diedrichs H, Marcos y Robles J, Llovet A, Gilon D, Das SK, Armstrong WF, Deeb GM, Eagle KA (2000) The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283(7):897–903. https://doi.org/10.1001/jama.283.7.897

    Article  CAS  PubMed  Google Scholar 

  4. Tsai TT, Trimarchi S, Nienaber CA (2009) Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur J Vasc Endovasc Surg 37(2):149–159. https://doi.org/10.1016/j.ejvs.2008.11.032

    Article  CAS  PubMed  Google Scholar 

  5. Chirillo F, Salvador L, Bacchion F, Grisolia EF, Valfre C, Olivari Z (2007) Clinical and anatomical characteristics of subtle-discrete dissection of the ascending aorta. Am J Cardiol 100(8):1314–1319. https://doi.org/10.1016/j.amjcard.2007.05.063

    Article  PubMed  Google Scholar 

  6. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, Evangelista A, Falk V, Frank H, Gaemperli O, Grabenwoger M, Haverich A, Iung B, Manolis AJ, Meijboom F, Nienaber CA, Roffi M, Rousseau H, Sechtem U, Sirnes PA, Allmen RS, Vrints CJ, Guidelines ESCCfP (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 35(41):2873–2926. https://doi.org/10.1093/eurheartj/ehu281

    Article  PubMed  Google Scholar 

  7. Kamalakannan D, Rosman HS, Eagle KA (2007) Acute aortic dissection. Crit Care Clin 23(4):779–800, vi. https://doi.org/10.1016/j.ccc.2007.07.002

    Article  PubMed  Google Scholar 

  8. Fang Z, Zhu XH, Wei X, Jiang DS (2018) The diagnostic value of combined D-Dimer with other indicators in suspected acute aortic dissection patients. Int J Cardiol 268:215. https://doi.org/10.1016/j.ijcard.2018.04.124

    Article  PubMed  Google Scholar 

  9. Pourafkari L, Tajlil A, Ghaffari S, Parvizi R, Chavoshi M, Kolahdouzan K, Khaki N, Parizad R, Hobika GG, Nader ND (2017) The frequency of initial misdiagnosis of acute aortic dissection in the emergency department and its impact on outcome. Intern Emerg Med 12(8):1185–1195. https://doi.org/10.1007/s11739-016-1530-7

    Article  PubMed  Google Scholar 

  10. Nienaber CA, Powell JT (2012) Management of acute aortic syndromes. Eur Heart J 33(1):26–35b. https://doi.org/10.1093/eurheartj/ehr186

    Article  PubMed  Google Scholar 

  11. Vagnarelli F, Corsini A, Bugani G, Lorenzini M, Longhi S, Bacchi Reggiani ML, Biagini E, Graziosi M, Cinti L, Norscini G, Taglieri N, Semprini F, Nanni S, Pasquale F, Rocchi G, Melandri G, Ambrosio G, Rapezzi C (2016) Troponin T elevation in acute aortic syndromes: frequency and impact on diagnostic delay and misdiagnosis. Eur Heart J Acute Cardiovasc Care 5(7):61–71. https://doi.org/10.1177/2048872615590146

    Article  PubMed  Google Scholar 

  12. Rapezzi C, Longhi S, Graziosi M, Biagini E, Terzi F, Cooke RM, Quarta C, Sangiorgi D, Ciliberti P, Di Pasquale G, Branzi A (2008) Risk factors for diagnostic delay in acute aortic dissection. Am J Cardiol 102(10):1399–1406. https://doi.org/10.1016/j.amjcard.2008.07.013

    Article  PubMed  Google Scholar 

  13. Asouhidou I, Asteri T (2009) Acute aortic dissection: be aware of misdiagnosis. BMC Res Notes 2:25. https://doi.org/10.1186/1756-0500-2-25

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansen MS, Nogareda GJ, Hutchison SJ (2007) Frequency of and inappropriate treatment of misdiagnosis of acute aortic dissection. Am J Cardiol 99(6):852–856. https://doi.org/10.1016/j.amjcard.2006.10.055

    Article  PubMed  Google Scholar 

  15. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457

    Article  CAS  PubMed  Google Scholar 

  16. Halliwell B, Gutteridge JM (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280(1):1–8. https://doi.org/10.1016/0003-9861(90)90510-6

    Article  CAS  PubMed  Google Scholar 

  17. Gitlin JD (1988) Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem 263(13):6281–6287

    Article  CAS  Google Scholar 

  18. Panichi V, Taccola D, Rizza GM, Consani C, Migliori M, Filippi C, Paoletti S, Sidoti A, Borracelli D, Panicucci E, Giovannini L (2004) Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol 17(5):715–720

    CAS  PubMed  Google Scholar 

  19. Arenas de Larriva AP, Norby FL, Chen LY, Soliman EZ, Hoogeveen RC, Arking DE, Loehr LR, Alonso A (2017) Circulating ceruloplasmin, ceruloplasmin-associated genes, and the incidence of atrial fibrillation in the atherosclerosis risk in communities study. Int J Cardiol 241:223–228. https://doi.org/10.1016/j.ijcard.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Powell JT, Muller BR, Greenhalgh RM (1987) Acute phase proteins in patients with abdominal aortic aneurysms. J Cardiovasc Surg 28(5):528–530

    CAS  Google Scholar 

  21. Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T (2017) Novel biomarkers of heart failure. Adv Clin Chem 79:93–152. https://doi.org/10.1016/bs.acc.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  22. Nienaber CA, Eagle KA (2003) Aortic dissection: new frontiers in diagnosis and management: part I: from etiology to diagnostic strategies. Circulation 108(5):628–635. https://doi.org/10.1161/01.CIR.0000087009.16755.E4

    Article  PubMed  Google Scholar 

  23. Akutsu K, Yoshino H, Tobaru T, Hagiya K, Watanabe Y, Tanaka K, Koyama N, Yamamoto T, Nagao K, Takayama M (2015) Acute type B aortic dissection with communicating vs. non-communicating false lumen. Circ J 79(3):567–573. https://doi.org/10.1253/circj.CJ-14-0828

    Article  PubMed  Google Scholar 

  24. Kimura N, Tanaka M, Kawahito K, Yamaguchi A, Ino T, Adachi H (2008) Influence of patent false lumen on long-term outcome after surgery for acute type A aortic dissection. J Thorac Cardiovasc Surg 136(5):1160–1166, 1166 e1161-1163. https://doi.org/10.1016/j.jtcvs.2008.05.052

    Article  PubMed  Google Scholar 

  25. Tang D, Han Y, Lun Y, Jiang H, Xin S, Duan Z, Zhang J (2019) Y chromosome loss is associated with age-related male patients with abdominal aortic aneurysms. Clin Interv Aging 14:1227–1241. https://doi.org/10.2147/CIA.S202188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ju X, Ijaz T, Sun H, Ray S, Lejeune W, Lee C, Recinos A 3rd, Guo DC, Milewicz DM, Tilton RG, Brasier AR (2013) Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice. Arterioscler Thromb Vasc Biol 33(7):1612–1621. https://doi.org/10.1161/ATVBAHA.112.301049

    Article  CAS  PubMed  Google Scholar 

  27. Han Y, Tanios F, Reeps C, Zhang J, Schwamborn K, Eckstein HH, Zernecke A, Pelisek J (2016) Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm. Clin Epigenetics 8:3. https://doi.org/10.1186/s13148-016-0169-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Y, Xiao Y, Sun H, Zhao Z, Zhu J, Zhang L, Dong J, Han T, Jing Q, Zhou J, Jing Z (2019) miR-27a regulates vascular remodeling by targeting endothelial cells' apoptosis and interaction with vascular smooth muscle cells in aortic dissection. Theranostics 9(25):7961–7975. https://doi.org/10.7150/thno.35737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samygina VR, Sokolov AV, Bourenkov G, Petoukhov MV, Pulina MO, Zakharova ET, Vasilyev VB, Bartunik H, Svergun DI (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One 8(7):e67145. https://doi.org/10.1371/journal.pone.0067145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barbariga M, Curnis F, Andolfo A, Zanardi A, Lazzaro M, Conti A, Magnani G, Volonte MA, Ferrari L, Comi G, Corti A, Alessio M (2015) Ceruloplasmin functional changes in Parkinson's disease-cerebrospinal fluid. Mol Neurodegener 10:59. https://doi.org/10.1186/s13024-015-0055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grolez G, Moreau C, Sablonniere B, Garcon G, Devedjian JC, Meguig S, Gele P, Delmaire C, Bordet R, Defebvre L, Cabantchik IZ, Devos D (2015) Ceruloplasmin activity and iron chelation treatment of patients with Parkinson's disease. BMC Neurol 15:74. https://doi.org/10.1186/s12883-015-0331-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tapper EB, Sengupta N, Lai M, Horowitz G (2016) Understanding and reducing ceruloplasmin overuse with a decision support intervention for liver disease evaluation. Am J Med 129(1):115 e117–115 e122. https://doi.org/10.1016/j.amjmed.2015.07.019

    Article  Google Scholar 

  33. Engin-Ustun Y, Ustun Y, Kamaci M, Sekeroglu R (2005) Maternal serum ceruloplasmin in preeclampsia. Int J Gynaecol Obstet 89(1):51–52. https://doi.org/10.1016/j.ijgo.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  34. Orhan HG, Ozgunes H, Beksac MS (2001) Correlation between plasma malondialdehyde and ceruloplasmin activity values in preeclamptic pregnancies. Clin Biochem 34(6):505–506. https://doi.org/10.1016/s0009-9120(01)00238-7

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy DJ, Fan Y, Wu Y, Pepoy M, Hazen SL, Tang WH (2014) Plasma ceruloplasmin, a regulator of nitric oxide activity, and incident cardiovascular risk in patients with CKD. Clin J Am Soc Nephrol 9(3):462–467. https://doi.org/10.2215/CJN.07720713

    Article  PubMed  Google Scholar 

  36. Reunanen A, Knekt P, Aaran RK (1992) Serum ceruloplasmin level and the risk of myocardial infarction and stroke. Am J Epidemiol 136(9):1082–1090. https://doi.org/10.1093/oxfordjournals.aje.a116573

    Article  CAS  PubMed  Google Scholar 

  37. Manttari M, Manninen V, Huttunen JK, Palosuo T, Ehnholm C, Heinonen OP, Frick MH (1994) Serum ferritin and ceruloplasmin as coronary risk factors. Eur Heart J 15(12):1599–1603. https://doi.org/10.1093/oxfordjournals.eurheartj.a060440

    Article  CAS  PubMed  Google Scholar 

  38. Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D, Kehayov I, Kolev V, Soldi R, Bagala C, de Muinck ED, Lindner V, Post MJ, Simons M, Bellum S, Prudovsky I, Maciag T (2003) Copper chelation represses the vascular response to injury. Proc Natl Acad Sci U S A 100(11):6700–6705. https://doi.org/10.1073/pnas.1231994100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cwynar A, Olszewska-Slonina D, Czajkowski R, Zegarska B, Bialecka A, Mecinska-Jundzill K, Piskorska E, Lampka M (2018) Investigation of oxidative stress in patients with alopecia areata by measuring the levels of malondialdehyde and ceruloplasmin in the blood. Postepy Dermatol Alergol 35(6):572–576. https://doi.org/10.5114/pdia.2017.68047

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salonen JT, Salonen R, Seppanen K, Kantola M, Suntioinen S, Korpela H (1991) Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis. BMJ 302(6779):756–760. https://doi.org/10.1136/bmj.302.6779.756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozgunes H, Gurer H, Tuncer S (1995) Correlation between plasma malondialdehyde and ceruloplasmin activity values in rheumatoid arthritis. Clin Biochem 28(2):193–194. https://doi.org/10.1016/0009-9120(94)00081-6

    Article  CAS  PubMed  Google Scholar 

  42. Giurgea N, Constantinescu MI, Stanciu R, Suciu S, Muresan A (2005) Ceruloplasmin—acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 11(2):RA48–RA51

    CAS  PubMed  Google Scholar 

  43. Fox PL, Mukhopadhyay C, Ehrenwald E (1995) Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci 56(21):1749–1758. https://doi.org/10.1016/0024-3205(95)00146-w

    Article  CAS  PubMed  Google Scholar 

  44. Kang JH, Kim KS, Choi SY, Kwon HY, Won MH (2001) Oxidative modification of human ceruloplasmin by peroxyl radicals. Biochim Biophys Acta 1568(1):30–36. https://doi.org/10.1016/s0304-4165(01)00198-2

    Article  CAS  PubMed  Google Scholar 

  45. Tian S, Jones SM, Jose A, Solomon EI (2019) Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis. J Am Chem Soc 141(27):10736–10743. https://doi.org/10.1021/jacs.9b03661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kok FJ, Van Duijn CM, Hofman A, Van der Voet GB, De Wolff FA, Paays CH, Valkenburg HA (1988) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am J Epidemiol 128(2):352–359. https://doi.org/10.1093/oxfordjournals.aje.a114975

    Article  CAS  PubMed  Google Scholar 

  47. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17(3):308–314. https://doi.org/10.1097/01.ede.0000209454.41466.b7

    Article  PubMed  Google Scholar 

  48. Makita S, Ohira A, Naganuma Y, Moriai Y, Niinuma H, Abiko A, Hiramori K (2006) Increased carotid artery stiffness without atherosclerotic change in patients with aortic dissection. Angiology 57(4):478–486. https://doi.org/10.1177/0003319706290625

    Article  PubMed  Google Scholar 

  49. Tamori Y, Akutsu K, Kasai S, Sakamoto S, Okajima T, Yoshimuta T, Yokoyama N, Ogino H, Higashi M, Nonogi H, Takeshita S (2009) Coexistent true aortic aneurysm as a cause of acute aortic dissection. Circ J 73(5):822–825. https://doi.org/10.1253/circj.cj-08-0427

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (grant number: DUT19RC(3)076), the National Natural Science Foundation of China (grant number: 81600370), and the China Postdoctoral Science Foundation (grant number: 2018M640270) for Yanshuo Han.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript review as well as eventual approval: Changcheng Ma, Chao Ji, and Yanshuo Han.

Corresponding author

Correspondence to Yanshuo Han.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict interests.

Ethical Approval

The study protocol was approved by the Ethics Committee of Shengjing Hospital of China Medical University(Ethics Approval No. 2016PS085K) according to the Declaration of Helsinki.

Consent to Participate

Each of the 85 AD patients and 85 controls had provided the written informed consent to participate in this study.

Consent for Publication

Each of the 85 AD patients and 85 controls had provided the written informed consent for publication. Six cases were excluded due to their unwillingness to offer the inpatient records for publication.

Code Availability

SJH-AADBB/CMU and SJH-MED/CMU Blood Biobank data that support the findings of this study have been deposited in Department of Laboratory Medicine, Shengjing Hospital of China Medical University with the accession codes [macc].

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Zhao, H., Shi, F. et al. Serum Ceruloplasmin Is the Candidate Predictive Biomarker for Acute Aortic Dissection and Is Related to Thrombosed False Lumen: a Propensity Score–Matched Observational Case–Control Study. Biol Trace Elem Res 199, 895–911 (2021). https://doi.org/10.1007/s12011-020-02219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02219-3

Keywords

Navigation