Skip to main content
Log in

Thermo-Mechanical Properties of Various Densities of Foamed Concrete Incorporating Polypropylene Fibres

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concrete has been extensively used in the development of urban infrastructure works. However, it has the tendency to absorb solar radiations, and these radiations are released back into the air in the form of heat energy. Dense concentration of infrastructures releases more heat, causing urban heat island (UHI) effect in which the ambient temperature of the urban areas rises slightly than the surrounding areas. Tropical countries which have a hot climate throughout the year are more affected by the UHI effect. Therefore, thermal insulating materials need to be introduced in the field of concrete construction. Foamed concrete, which has air voids in its matrix, is a potential thermal insulating material. But due to reduced density, it, however, achieves lower strength. Polypropylene (PP) fibres are used to reinforce the foamed concrete and improve its compressive and tensile strengths. In this study, three different densities, 1400, 1600 and 1800 kg/m3, were cast, and 0.8% PP fibres were added. The thermo-mechanical properties were investigated in terms of thermal conductivity, surface temperature, compressive and tensile strengths with and without the addition of PP fibres. Based on the findings, the addition of PP fibres gained more strength and reduced thermal conductivity in the lower densities of foamed concrete. In contrast, it had an opposite impact on 1800 kg/m3 density. The addition of PP fibres also indicated that it could reduce the surface temperature of higher-density foamed concrete compared to lower densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. UNPD. World Urbanisation Prospects: The 2011 revision. New York: United Nations (2011)

  2. Hamoodi, M.N.; Corner, R.; Dewan, A.: Thermophysical behaviour of LULC surfaces and their effect on the urban thermal environment. J. Spatial Sci. 64(1), 111–130 (2019). https://doi.org/10.1080/14498596.2017.1386598

    Article  Google Scholar 

  3. Jhatial, A. A.; Inn, G. W.; Mohamad, N.; Alengaram, U. J.; Mo, K. H.; Abdullah, R. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. In: IOP Conference Series: Materials Science and Engineering, Vol. 271, No. 1, pp. 1–7. (2017). https://doi.org/10.1088/1757-899X/271/1/012058

  4. Elsayed, I.S.: A study on the urban heat island of the city of Kuala Lumpur, Malaysia. J. King Abdulaziz Univ. Metrol. Environ. Arid Land Agric. Sci. 142(588), 1–27 (2012). https://doi.org/10.4197/Met.23-2-8

    Article  Google Scholar 

  5. Streutker, D. R. A. (2003). “Study of the urban heat island of Houston, Texas”, Ph. D. Thesis, Rice University.

  6. Oke, T.R.: Towards better scientific communication in urban climate. Theoret. Appl. Climatol. 84(1–3), 179–190 (2006). https://doi.org/10.1007/s00704-005-0153-0

    Article  Google Scholar 

  7. Soltani, A.; Sharifi, E.: Daily variation of urban heat island effect and its correlations to urban greenery: a case study of Adelaide. Front. Archit. Res. 6(4), 529–538 (2017). https://doi.org/10.1016/j.foar.2017.08.001

    Article  Google Scholar 

  8. Mydin, M.A.O.; Awang, H.; Roslan, A.F.: Determination of light-weight foamed concrete thermal properties integrating various additives. Elixir Cem. Concr. Compos 48, 9286–9291 (2012)

    Google Scholar 

  9. Kamaruddin, S.; Goh, W.I.; Jhatial, A.A.; Lakhiar, M.T.: Chemical and fresh state properties of foamed concrete incorporating palm oil fuel ash and eggshell ash as cement replacement. Int. J. Eng. Technol. 7(4.30), 350–354 (2018). https://doi.org/10.14419/ijet.v7i4.30.22307

    Article  Google Scholar 

  10. Mydin, M.A.O.; Wang, Y.C.: Mechanical properties of foamed concrete exposed to high temperatures. Constr. Build. Mater. 26(1), 638–654 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.067

    Article  Google Scholar 

  11. Mohammed, J.H.; Hamad, A.J.: Materials, properties and application review of light-weight concrete. Technical Rev. Fac. Eng. Univ. Zulia 37(2), 10–15 (2014)

    Google Scholar 

  12. Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R. Experimental study for structural behaviour of precast lightweight panel (PLP) under flexural load. In: IOP Conference Series: Materials Science and Engineering vol. 216, no. 1. IOP Publishing. (2017). https://doi.org/10.1088/1757-899X/216/1/012035

  13. Zahari, N. M.; Rahman, I. A.; Zaidi, A. M. A. Foamed concrete: potential application in thermal insulation. In: Proceedings of MUCEET 2009 Malaysian Technical Universities Conference on Engineering and Technology June 20–22, pp. 47–52 MS Garden, Kuantan, Pahang, Malaysia (2009)

  14. Soebarto, V.: Analysis of indoor performance of houses using rammed earth walls. Build. Simul. 2009, 1530–1537 (2009)

    Google Scholar 

  15. Aldridge, D. (2005). Introduction to foamed concrete: what, why and how? use of foamed concrete in construction. Thomas Telford Publishing, UK. https://www.icevirtuallibrary.com/doi/pdf/10.1680/uofcic.34068.0001

  16. Mustapore, N.: A study on cellular lightweight concrete blocks. Int. J. Res. Eng. Technol. 05(05), 188–191 (2016)

    Article  Google Scholar 

  17. Mydin, M.A.O.: Potential of using lightweight foamed concrete in composite load-bearing wall panels in low-rise construction. Concr. Res. Lett. 2(2), 213–227 (2011)

    Google Scholar 

  18. Akers, D. J.; Gruber, R. D.; Ramme, B. W.; Boyle, M. J.; Grygar, J. G.; Rowe, S. K.; Kowalsky, M. J. Guide for Structural Lightweight-Aggregate Concrete. In: ACI 213R-03. American Concrete Institute (ACI), Michigan (2003).

  19. Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Rind, T.A.; Sandhu, A.R.: Development of thermal insulating lightweight foamed concrete reinforced with polypropylene fibres. Arab. J. Sci. Eng. 45(5), 4067–4076 (2020). https://doi.org/10.1007/s13369-020-04382-0

    Article  Google Scholar 

  20. Roylance, D. Mechanical properties of materials. Massachusetts institute of technology Retrieved on May 20, 2018, from http://web.mit.edu/course/3/3.225/book.pdf(2008)

  21. Jones, M. R.; McCarthy, A. Behaviour and assessment of foamed concrete for construction application. In: Dhir, R.K., Newlands, M.D., mccarthy, A., (eds.) Use of foamed concrete in construction. pp. 61–88, Thomas Telford London, UK (2005)

  22. Mydin, M.A.O.: Effective thermal conductivity of foamcrete of different densities. Concr. Res. Lett. 2(1), 181–189 (2011)

    Google Scholar 

  23. Real, S.; Bogas, J.A.; Gomes, M.G.; Ferrer, B.: Thermal conductivity of structural lightweight aggregate concrete. Magazine Concr. Res. 68(15), 798–808 (2016)

    Article  Google Scholar 

  24. Memon, I.A.; Jhatial, A.A.; Sohu, S.; Lakhiar, M.T.; Khaskheli, Z.H.: Influence of fibre length on the behaviour of polypropylene fibre reinforced cement concrete. Civil Eng. J. 4(9), 2124–2131 (2018). https://doi.org/10.28991/cej-03091144

    Article  Google Scholar 

  25. Błaszczyńskia, T.; Przybylska-Fałeka, M.: Steel fibre reinforced concrete as a structural material. Procedia Eng. 122, 282–289 (2015). https://doi.org/10.1016/j.proeng.2015.10.037

    Article  Google Scholar 

  26. Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Hong, L.W.; Lakhiar, M.T.; Samad, A.A.A.; Abdullah, R.: The mechanical properties of foamed concrete with polypropylene fibres. Int. J. Eng. Technol. 7(3.7), 411–413 (2018)

    Google Scholar 

  27. Jhatial, A.A.; Sohu, S.; Bhatti, N.K.; Lakhiar, M.T.; Oad, R.: Effect of steel fibres on the compressive and flexural strength of concrete. Int J Adv Appl Sci 5(10), 16–21 (2018). https://doi.org/10.21833/ijaas.2018.10.003

    Article  Google Scholar 

  28. Liu, M.Y.J.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.: Evaluation of thermal conductivity, mechanical and transport properties of light-weight aggregate foamed geopolymer concrete. Energy Build. 72, 238–245 (2014). https://doi.org/10.1016/j.enbuild.2013.12.029

    Article  Google Scholar 

  29. Nandi, S.; Chatterjee, A.; Samanta, P.; Hansda, T.: Cellular concrete and its facets of application in civil engineering. Int. J. Eng. Res. 5(1), 37–43 (2016)

    Google Scholar 

  30. Batool, F.; Bindiganavile, V.: Evaluation of thermal conductivity of cement-based foam reinforced with polypropylene fibers. Mater. Struct. 53(1), 13 (2020)

    Article  Google Scholar 

  31. ASTM C150/C150M-19a: Standard Specification for Portland Cement. ASTM International, West Conshohocken (2019)

  32. British Cement Association Foamed concrete composition and properties, British Cement Association Century House (1994)

  33. BS EN 12390-3:2019, “Testing hardened concrete. Compressive strength of test specimens”, British Standard Institution, London.

  34. BS EN 12390-6:2009, “Testing hardened concrete. Tensile splitting strength of test specimens”, British Standard Institution, London.

  35. BS EN 12664:2001, “Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Dry and moist products of medium and low thermal resistance”, British Standard Institution, London.

  36. Bevilacqua, P.; Mazzeo, D.; Bruno, R.; Arcuri, N.: Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern Mediterranean climate. Energy Build. 150, 318–327 (2017). https://doi.org/10.1016/j.enbuild.2017.05.081

    Article  Google Scholar 

  37. Del Carpio, J.A.V.; Marinoski, D.L.; Trichês, G.; Lamberts, R.; de Melo, J.V.S.: Urban pavements used in Brazil: characterisation of solar reflectance and temperature verification in the field. Sol. Energy 134, 72–81 (2016). https://doi.org/10.1016/j.solener.2016.04.044

    Article  Google Scholar 

  38. Hazlin, A. R.; Iman, A.; Mohamad, N.; Goh, W. I.; Sia, L. M.; Samad, A. A. A.; Ali, N. Microstructure and tensile strength of foamed concrete with added polypropylene fibers. In: MATEC Web of Conferences vol. 103, p. 01013). EDP Sciences (2017).

  39. Din, M.F.M.; Dzinun, H.; Ponraj, M.; Chelliapan, S.; Noor, Z.Z.; Remaz, D.; Iwao, K.: Investigation of thermal effect on exterior wall surface of building material at urban city area. Int. J. Energy Environ 3(4), 531–540 (2012). https://doi.org/10.4172/2165-784x.1000110

    Article  Google Scholar 

  40. Anak Guntor, N.A.; Md Din, M.F.; Ponraj, M.; Iwao, K.: Thermal performance of developed coating material as cool pavement material for tropical regions. J. Mater. Civ. Eng. 26(4), 755–760 (2013). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000859

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate and acknowledge the financial support received from Research Management Centre, Universiti Tun Hussein Onn Malaysia under grant FRGS RACER (Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers) RACER/1/2019/TK06/UTHM/1 and FRGS RACER K140 for this experimental project and the University of Malaya, Malaysia for their service during the thermal conductivity test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashfaque Ahmed Jhatial.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhatial, A.A., Goh, W.I., Sohu, S. et al. Thermo-Mechanical Properties of Various Densities of Foamed Concrete Incorporating Polypropylene Fibres. Arab J Sci Eng 45, 8171–8186 (2020). https://doi.org/10.1007/s13369-020-04657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04657-6

Keywords

Navigation