Skip to main content
Log in

Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Conjunction of 1D as well as 2D carbonaceous materials (CMs) is of great importance because of the significant improvement in the optoelectronic properties. Through extensive optimization, a rapid, facile and heat-treatment free route is progressed which ensues 88.4 and 92.3% degradation of congo-red dye for CNTs/ZnO and g-C3N4/ZnO, respectively. g-C3N4/ZnO shows the highest value of correlation co-efficient (R2) (0.9927) and rate constant (KC) (0.0390 min−1) among all others. g-C3N4/ZnO-HPs4 displays the highest potential of 1.54 V and over potential of 310 mV for current density value of 10 mA/cm2 compared to others composite while CNTs/ZnO-HPs4 Tafel slope has a value of 42 mV/dec. Scanning and transmission electron microscopy, X-ray diffractometry and energy dispersive spectrometry were carried out to confirm the efficacy of nano-composites while electron LSV, Tafel slopes and Nyquist plots were plotted to reveal the consequent efficient electro-catalytic behavior. The modified recipe for the development of nanocomposites having CMs exhibited its potential for use in multiple engineering applications, including but not limited to photocatalysis and oxygen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas MA, Basit MA, Park TJ, Bang JH (2015) Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys Chem Chem Phys 17:9752–9760

    Article  CAS  Google Scholar 

  • Azqhandi MHA, Rajabi F, Keramati M (2017) Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study. Results Phys 7:1106–1114

    Article  Google Scholar 

  • Bagheri H, Karimi-Maleh H, Karimi F, Mallakpour S, Keyvanfard M (2014) Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor. J Mol Liquids 198:193–199

    Article  CAS  Google Scholar 

  • Basit MA, Abbas MA, Jung ES, Ali I, Kim DW, Bang JH, Park TJ (2018) Enhanced PbS quantum dot loading on TiO2 photoanode using atomic-layer-deposited ZnS interfacial layer for quantum dot-sensitized solar cells. Mater Chem Phys 220:293–298

    Article  CAS  Google Scholar 

  • Basit MA, Malik MSU, Rehman GU, Awan FS, Khan LA, Subhani T (2019) Incorporation of carbon nanotubes on strategically de-sized carbon fibers for enhanced interlaminar shear strength of epoxy matrix composites. J Chem Soc Pak 41:655

    Google Scholar 

  • Bayan S, Gogurla N, Midya A, Ray SK (2016) White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon 108:335–342

    Article  CAS  Google Scholar 

  • Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619

    Article  CAS  Google Scholar 

  • Cai Z, Bu X, Wang P, Ho JC, Yang J, Wang X (2019) Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J Mater Chem A 7:5069–5089

    Article  CAS  Google Scholar 

  • Chaudhary D, Singh S, Vankar V, Khare N (2018) ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J Photochem Photobiol A 351:154–161

    Article  CAS  Google Scholar 

  • Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Tasis D, Yannopoulos S (2007) Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation. Thin Solid Films 515:8524–8528

    Article  CAS  Google Scholar 

  • Cui J et al (2019a) Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 13:7483–7492

    Article  CAS  Google Scholar 

  • Cui J et al (2019b) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19:6569–6576

    Article  CAS  Google Scholar 

  • Ding Z, Chen X, Antonietti M, Wang X (2011) Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4:274–281

    CAS  Google Scholar 

  • Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C Photochem Rev 20:33–50

    Article  CAS  Google Scholar 

  • Ebbesen T, Ajayan P (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220

    Article  CAS  Google Scholar 

  • Gogotsi Y (2014) What nano can do for energy storage. ACS Nano 8:5369–5371. https://doi.org/10.1021/nn503164x

    Article  CAS  Google Scholar 

  • Gong M et al (2013) An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455. https://doi.org/10.1021/ja4027715

    Article  CAS  Google Scholar 

  • Gupta V, Saleh TA (2011) Syntheses of carbon nanotube-metal oxides composites; adsorption and photo-degradation. In: Carbon nanotubes-from research to applications. IntechOpen, New York

  • Haider AJ, Al-Anbari RH, Mohammed HA, Ahmed DS (2018a) Synthesis of multi-walled carbon nanotubes decorated with zinc oxide nanoparticles for removal of pathogenic bacterial. Eng Technol J 36:1075–1080

    Google Scholar 

  • Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Article  CAS  Google Scholar 

  • Jang DM, Kwak IH, Kwon EL, Jung CS, Im HS, Park K, Park J (2015) Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J Phys Chem C 119:1921–1927. https://doi.org/10.1021/jp511561k

    Article  CAS  Google Scholar 

  • Khan TF, Muhyuddin M, Husain SW, Basit MA (2019) Synthesis and characterization of ZnO–ZnS nanoflowers for enhanced photocatalytic performance: ZnS decorated ZnO nanoflowers. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2019. IEEE, pp 60–65

  • Kim C, Kim JW, Kim H, Kim DH, Choi C, Jung YS, Park J (2016) Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode. Chem Mater 28:8498–8503

    Article  CAS  Google Scholar 

  • Kim M, Kim M-K, Lee J-H, Shin S-H, Park B-S, Jo W-K (2017a) Efficient photocatalysis of organic vapors using graphitic carbon nitride and iron dual-coupled ZnO nanocomposites. J Taiwan Inst Chem Eng 74:211–217

    Article  CAS  Google Scholar 

  • Kumar P, Boukherroub R, Shankar K (2018a) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 6:12876–12931

    Article  CAS  Google Scholar 

  • Kumar S, Reddy NL, Kumar A, Shankar MV, Krishnan V (2018b) Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 43:3988–4002

    Article  CAS  Google Scholar 

  • Kumar S, Reddy NL, Kumar A, Shankar MV, Krishnan V (2018c) Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 43:3988–4002

    Article  CAS  Google Scholar 

  • Le S, Jiang T, Li Y, Zhao Q, Li Y, Fang W, Gong M (2017) Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl Catal B 200:601–610

    Article  CAS  Google Scholar 

  • Li B, Wang Y (2009) Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J Phys Chem 114:890–896

    Google Scholar 

  • Li S, Zhang M, Gao Y, Bao B, Wang S (2013) ZnO–Zn/CNT hybrid film as light-free nanocatalyst for degradation reaction. Nano Energy 2:1329–1336

    Article  CAS  Google Scholar 

  • Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ (2015) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed 54:4646–4650

    Article  CAS  Google Scholar 

  • Mohamed MM, Ghanem MA, Khairy M, Naguib E, Alotaibi NH (2019) Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Appl Surf Sci 487:539–549

    Article  CAS  Google Scholar 

  • Mohammad A, Ahmad K, Qureshi A, Tauqeer M, Mobin SM (2018) Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sens Actuators B: Chem 277:467–476

    Article  CAS  Google Scholar 

  • Naeem HM, Muhyuddin M, Rasheed R, Noor A, Akram MA, Aashiq MN, Basit MA (2019) Simplistic wet-chemical coalescence of ZnO with Al2O3 and SnO2 for enhanced photocatalytic and electrochemical performance. J Mater Sci: Mater Electron 30:14508–14518

    CAS  Google Scholar 

  • Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

  • Nazir M, Aziz MI, Ali I, Basit MA (2019) Antimicrobial and photocatalytic behavior of metal chalcogenide deposited P25-TiO2. Nanopart Photon Nanostruct Fundam Appl 36:100721

    Article  Google Scholar 

  • Noor Safitri R et al (2015) Zinc oxide/carbon nanotubes nanocomposite: synthesis methods and potential applications. Advanced Materials Research. Trans Tech Publ, New York, pp 45–49

    Google Scholar 

  • Omar A, Abdullah H, Yarmo MA, Shaari S, Taha MR (2013) Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi-and single-walled carbon nanotubes. J Phys D Appl Phys 46:165503

    Article  CAS  Google Scholar 

  • Potirak P, Kahattha C, Pecharapa W (2010) Synthesis and characterization of carbon nanotube/zinc oxide composites. In: 2010 3rd International Nanoelectronics Conference (INEC), 2010. IEEE, pp 1035–1036

  • Qin C, Wang Y, Gong Y, Zhang Z, Cao J (2019) CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. J Alloy Compd 770:972–980

    Article  CAS  Google Scholar 

  • Ran J, Ma TY, Gao G, Du X-W, Qiao SZ (2015) Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H 2 production. Energy Environ Sci 8:3708–3717

    Article  CAS  Google Scholar 

  • Reddy MM, Reddy GR, Chennakesavulu K, Sundaravadivel E, Prasath S, Rabel A, Sreeramulu J (2017) Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies. J Porous Mater 24:149–156

    Article  CAS  Google Scholar 

  • Rodrigues J et al (2015) One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties. Mater Sci Eng, B 195:38–44

    Article  CAS  Google Scholar 

  • Sapkota KP, Lee I, Hanif M, Islam M, Hahn JR (2019) Solar-light-driven efficient ZnO–single-walled carbon nanotube photocatalyst for the degradation of a persistent water pollutant organic dye. Catalysts 9:498

    Article  Google Scholar 

  • Shi Y et al (2013) Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem Mater 25:1000–1012

    Article  CAS  Google Scholar 

  • Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P (2018) Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. Beilstein J Nanotechnol 9:353–363

    Article  CAS  Google Scholar 

  • Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  CAS  Google Scholar 

  • Suntako RJBOMS (2015) Effect of zinc oxide nanoparticles synthesized by a precipitation method on mechanical and morphological properties of the CR foam. Bull Mater Sci 38:1033–1038

    Article  CAS  Google Scholar 

  • Tahir M et al (2015) Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res 8:3725–3736. https://doi.org/10.1007/s12274-015-0872-1

    Article  CAS  Google Scholar 

  • Tian H, Fan H, Ma J, Ma L, Dong G (2017) Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim Acta 247:787–794

    Article  CAS  Google Scholar 

  • Wang C-Y, Adhikari S (2011) ZnO-CNT composite nanotubes as nanoresonators. Phys Lett A 375:2171–2175

    Article  CAS  Google Scholar 

  • Wang X, Yao S (2009) Sol-gel preparation of CNT/ZnO nanocomposite and its photocatalytic property. Chin J Chem 27:1317–1320

    Article  CAS  Google Scholar 

  • Wang X, Xia B, Zhu X, Chen J, Qiu S, Li J (2008) Controlled modification of multiwalled carbon nanotubes with Zno nanostructures. J Solid State Chem 181:822–827

    Article  CAS  Google Scholar 

  • Wang B et al (2018a) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617

    Article  CAS  Google Scholar 

  • Wang D, Guo J, Cui C, Ma J, Cao A (2018b) Controllable synthesis of CNT@ ZnO composites with enhanced electrochemical properties for lithium-ion battery. Mater Res Bull 101:305–310

    Article  CAS  Google Scholar 

  • Wu S et al (2019) Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity. J Colloid Interface Sci 538:99–107

    Article  CAS  Google Scholar 

  • Xue Y, Wang Y, Liu H, Yu X, Xue H, Feng L (2018) Electrochemical oxygen evolution reaction catalyzed by a novel nickel–cobalt-fluoride catalyst. Chem Commun 54:6204–6207

    Article  CAS  Google Scholar 

  • Yang X et al (2019) Ultra-low Au–Pt Co-decorated TiO2 nanotube arrays: construction and its improved visible-light-induced photocatalytic properties. Solar Energy Mater Solar Cells 201:110065

    Article  CAS  Google Scholar 

  • Yin R, Luo Q, Wang D, Sun H, Li Y, Li X, An J (2014) SnO2/gC3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073

    Article  CAS  Google Scholar 

  • Yinghuai Zhu SG, Hosmane N (2018) Carbonaceous materials. Compr Energy Syst 2:40–71

    Google Scholar 

  • Zeng D, Ong W-J, Zheng H, Wu M, Chen Y, Peng D-L, Han M-Y (2017) Ni12P5 nanoparticles embedded into porous gC3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light. J Mater Chem A 5:16171–16178

    Article  CAS  Google Scholar 

  • Zhang Z, Huo Y (2013) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    Article  CAS  Google Scholar 

  • Zhang R, Fan L, Fang Y, Yang S (2008) Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J Mater Chem 18:4964–4970

    Article  CAS  Google Scholar 

  • Zhang Z, Huo F, Zhang X, Guo DJSM (2012a) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67:657–660

    Article  CAS  Google Scholar 

  • Zhang Z, Song Y, Xu C, Guo DJSM (2012b) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scr Mater 67:197–200

    Article  CAS  Google Scholar 

  • Zhang Z, Wang B, Kang R, Zhang B, Guo DJCA (2015) Changes in surface layer of silicon wafers from diamond scratching. Crip Anim 64:349–352

    Google Scholar 

  • Zhang Z, Cui J, Wang B, Wang Z, Kang R (2017) Compounds A novel approach of mechanical chemical grinding. J Alloys Compd 726:514–524

    Article  CAS  Google Scholar 

  • Zhang Z, Shi Z, Du Y, Yu Z, Guo L (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    Article  CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Article  CAS  Google Scholar 

  • Zhang Z et al (2020a) Macroscale Superlubricity Enabled by Graphene-Coated Surfaces. Adv Sci 7:1903239

    Article  CAS  Google Scholar 

  • Zhang Z, Liao L, Wang X, Xie W, Guo DJASS (2020b) Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Appl Surf Sci 506:144670

    Article  CAS  Google Scholar 

  • Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37

    Article  CAS  Google Scholar 

  • Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731

    Article  CAS  Google Scholar 

  • Zhou D, Chen Z, Yang Q, Dong X, Zhang J, Qin L (2016a) In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties. Solar Energy Mater Solar Cells 157:399–405

    Article  CAS  Google Scholar 

  • Zhou L, Zhang H, Sun H, Liu S, Tade MO, Wang S, Jin W (2016b) Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review Catalysis. Sci Technol 6:7002–7023

    CAS  Google Scholar 

  • Zhu J, Xiao P, Li H, Carabineiro SA (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MI: experimentation, methodology, writing—original draft. FR: visualization, software. NN: investigation, methodology. TA: formal analysis. MFK: validation, formal analysis. TJP: formal analysis (revision), writing—review and editing. MAB: conceptualization, resources, supervision.

Corresponding authors

Correspondence to Tae Joo Park or Muhammad Abdul Basit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israr, M., Raza, F., Nazar, N. et al. Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. Appl Nanosci 10, 3805–3817 (2020). https://doi.org/10.1007/s13204-020-01474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01474-z

Keywords

Navigation